8.2

A transmission line consisting of

Two concentric circular cylinders of metal with conductivity o and skin depth &,
as shown, is filled with a uniform lossless dielectric (u,&). A TEM mode is
propagated along this line. Section 8.1 applies.

(a) Show that the time averaged power flow along the line is

i)

where H, isthe peak value of the azimuthal magnetic field at the surface of
the inner conductor.

(b) Show that the transmitted power is attenuated along the line as

P(z)=Pe ™"
where
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(c) The characteristicimpedance Z, of the line is defined as the ratio of the

voltage between the cylinders to the axial current flowing in one of them at any
position Z . Show that for this line

Z, = 2i Lad 1n(9j
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(d) Show that the series resistance and inductance per unit length of the line are
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where 4, is the permeability of the conductor. The correction to the
inductance comes from the penetration of the flux into the conductors by a
distance of order ¢.

Sol:

(a) Bysymmetry, ® = CD(p)
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Consider the energy in volume,
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where ¢ indicated the distance into the conductor.
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8.3

(a) A transmission line consists of two identical thin strips of metal, shown in cross
section in the sketch. Assuming that b >> a, discuss the propagation of a TEM mode
on this line, repeating the derivations of Problem 8.2. Show that

_A e
"3 \/:|H°|
1 e

aoco \ u
-E(
e\b
R=_2_
aob
L:(ﬂa+ﬂc5j
b

where the symbols on the left have the same meanings as in Problem 8.2.

Choose a rectangular coordinate system with X parallel to the strip along side b, y

perpendicular to the strip and z along the line. Let K(?,t)= Koei(kz_“n)i be the

surface current density of the top strip. Thus, the magnetic field in between the two
strips is given by

B = uK& = uK e %, H _B_ K,e' %
7
Therefore, K, =H,. The electric field can be derived from the Maxwell’s equation:
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The average power transmitted along the line
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where the integration of the second term taking into account the magnetic energy

stored inside the conductors. Note that inside the conductors,
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(b) The lower half of the figure shows the cross section of a microstrip line with a



strip of width b mounted on a dielectric substrate of thickness h and dielectric
constant ¢, all on a ground plane. What differences occur here compared to part a if
b>>h?Ifb<<h?

For the case b>>h, the electric and magnetic fields are mostly confined in the region
between the strip and the ground plane and are uniform within the region. Therefore,
this case is very similar to part (a) with the slab and its mirror image. However the
case b<<h is very different from (a). This case can be approximated by a wire above a
grounding plane. The dielectric substrate should have little effect on the quantities
calculated in (a) since both electric and magnetic fields extend mostly in the region

without the substrate.

8.4

Transverse electric and magnetic waves are propagated along a hollow, right circular

cylinder with inner radius R and conductivity o .

(a) Find the cutoff frequencies of the various TE and TM modes. Determine
numerically the lowest cutoff frequency (the dominant mode) in terms of the
tube radius and the ratio of cutoff frequencies of the next four higher modes to
that of the dominant mode. For this pat assume that the conductivity of the
cylinder is infinite.

(b) Calculate the attenuation constants of the waveguide as a function of frequency
for the lowest two distinct modes and plot them as a function of frequency.

Sol:

(a) Following the analysis on page 369 with the replacement % — k, itis seen

that the cutoff frequencies are

!
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N R for mode TMm, and @ ,, = for mode TE .

There X, isthe n-th zero of the Bessel function Jm(x) and X;,, isthen-th

zero diJm(x). The fundamental mode is TEy; with @ |, :%Ea)o with
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The next four higher modes are:
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(b) TEj1: We require  to calculate the power P from Eq. 8.51 in Jackson, and

all magnetic fields to calculate
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The attenuation constant for a hollow brass guide, for which x = u. = 1, and
g=¢, isthen found to be
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and evaluating ,H( ‘—‘ for a hollow brass guide ( = ¢, = 14, and

g=g,), itis found
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8.5
A waveguide is constructed so that the cross section of the guide forms a right triangle

with sides of length a, a, \/Ea , as shown. The medium inside has ¢, = ¢, =1.

(a) Assuming infinite conductivity for the walls, determine the possible modes of

propagation and their cutoff frequencies.

In general, to solve a problem like this, we need to consider the Dirichlet or Neumann
problem for a boundary without any ‘standard’ (i.e. rectangular or circular) symmetry.

In particular, this means there is not natural coordinate system to use for the

two-dimensional Helmholtz equation [Vf +y° ] @ =0 that both allows for separation

of variables and respects the symmetry of the boundary surface (which would allow a
simple specification of the boundary data). A general problem of this form (with no
simple boundary symmetry) is quite unpleasant to solve.

In this case, we can think of the triangle as ‘half” of a square.
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In particular, the key step to this problem is to note that the triangle may be obtained

from the square by imposing reflection symmetry along the X = y diagonal. This
symmetry is a Z, reflection on the coordinates of the form

Zy: X—>Y, y—>X

Eigenfunctions go(x, y) can then be classified as either Z,-even or Z,-odd

Z,: p(x,y)—>£p(y,x)
The odd functions vanish along the diagonal, so they automatically satisfy Dirichlet

conditions go(x= y):O on the diagonal. Similarly, the even functions have

vanishing normal derivative on the diagonal and hence automatically satisfy Neumann

conditions. We will use this fact to construct TM and TE modes for the triangle.

We begin with the TM modes. Using rectangular coordinates, it is natural to write

(kxx+kyy)

solutions of the Helmholtz equation [ai +0) + 72]¢ =0 as p~¢ where

k? +k? = »*. This means we may expand the eigenfunctions in terms of sines and
x TRy =Y Yy €Xp g

cosines. For TM modes satisfying the Dirichlet condition ¢, =0, we start with
eigenfunctions on the square

. hx

sin Y
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which automatically satisfy the boundary conditions on the four walls of the square.
This gives
Yo =M+’
a

so the cutoff frequencies are

=T w22 1

In order to satisfy the Dirichlet condition on the diagonal, we take the Z,-odd

combination

. mzX . nrx . NzX . mrx
(TM) @y =SIN sin y—sm sin y
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It is simple to verify that (p(X,O) = (o(a, y) = (p(x,x) =0, so that all boundary



conditions on the triangle are indeed satisfied. The cutoff frequencies are given by (1).
Note here that the Z, projection removes the m = n modes and also antisymmetrizes
m with n. As a result, the integer labels m and n may be taken to satisfy the condition
m>n>0.

The analysis for TE modes is similar. However, for Neumann conditions, we take
cosine combinations as well as a Z, -even eigenfunction. This gives

mzX nz nzX mz
(TE) @y = COS cos y N cos y

a a a a

with identical cutoff frequencies as in (1). This time, however, the labels m and n may
be taken to satisfty m>n=>0 (except m=n=0 is not allowed).

(b) For the lowest modes of each type calculate the attenuation constant, assuming
that the walls have large, but finite, conductivity. Compare the result with that for a

square guide of side a made from the same material.

The attenuation coefficients are determined by power and power loss. We begin with

TM modes. For the power, we need to compute
J‘ |(p|2da=_[ [sink xsink y—sink Xxsink y]zda (2)
A A m n n m

It is perhaps easiest to compute this by integrating over the square and then dividing
by two for the triangle. This is because the integration separates into X and Y integrals,

and we may use orthogonality
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The factor of 1/2 is for the triangle, while the factor of 2 is because two non-vanishing

terms arise when squaring the integrand in (2). (Recall that m=n for TM modes.)

This gives an expression for the power
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where A=a’/2 is the area of the triangle. Calculating the power loss involves




integrating a normal derivative

2

99
on

dl

.

We break this into three parts: along y = 0, along X = a and along the diagonal X =y.
Along the y = 0 wall, we have =y and

% =£[nsinkmx—msinknx]
¥, a
As aresult
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A similar calculation, or use of symmetry, will result in an identical expression for the

integral along the X = a wall. For the diagonal, we use = L()A( — )7) to compute

N
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Combining this diagonal with (3) for the sides, we obtain
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where C=a+a++/2a is the circumference of the triangle. This gives a TM mode

2

op

’ C
dl=C=—(m*>+n?)="y?
on 2a2( ) 27m”

power loss of

P (0] 1 $
dz 206\ @, ) ol ¢

The attenuation coefficient is thus
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so that the geometrical factor & =1 is trivial. Note that the energy loss calculation

along the diagonal of the triangle gives the same result as along the square edges. As a
result, the geometrical factor & =1 is independent of whether the waveguide is

square or right triangular. This is why the triangular TM result is identical to the

square TM result, at least up to the ratios C/A:2(2+\/§)/az6.83/a for the

triangle and C/A=4/a for the square.

The power loss for the TE modes is somewhat harder to deal with because of the

possibility of special cases. Consider

@ =cosk, xcosk y+cosk xcosk,y 4)

where m>n>0.Ifn =0, we end up with

@ =cosk, Xx+cosk_ y (m>0)

In this case
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with the above integrals gives an attenuation coefficient

and
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where C = (2 +2 ) a and A=a’/2. Here the geometrical factors are

_1+\/5

=——F , Ny =1 m>n=0
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For the rectangular waveguide, one has instead
a 1 2b

— > =, Nypo=———1 when b—>a
a+b 2 a+b

This is different because the power loss calculation is no longer universal, giving

§mo =

different coefficients along the diagonal as along the square edges. The remaining TE
cases to consider are modes (4) where m=n>0 and m>n>0. Here we simply state the
results. For m=n>0 we have

@ =cosk_ Xcosk_y



(we have removed an unimportant factor of two) so that

A
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This gives

4+2

- = 0
S Nk (m=n>0)
On the other hand, for the general case m>n>0 we find
2 a> A
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In all cases, 77,,, =1, which is the same for the triangle or the square waveguide. For

&..» the factor is essentially a geometric combination of contributions along the

perimeter of either 1 or 1/2 depending on the particular mode and its degeneracies.

8.6
A resonant cavity of copper consists of a hollow, right circular cylinder of inner radius
R andlength L, with flat end faces.

(a) Determine the resonant frequencies of the cavity for all types of waves. With
(1/ ,ugR) as a unit of frequency, plot the lowest four resonant frequencies of

each type as a function of R/L of 0<R/L <2.Does the same mode have the
lowest frequency for all R/L?

(b) f R=2cm, L=3cm,and the cavity is made of pure copper, what is the
numerical value of Q for the lowest resonant mode?

Sol:



(a) From Jackson (8.81) and (8.83),

Tanp:
1 p 7’

[ RZ
p=0,1,2.,m=0,1,2..,n=1,2,3..
TEmnp:

1 p 7’
mnp \/— Rz

p=1,2,3.,m=0,1,2..,n=1,2,3..
The frequency of TMmn is independent of L. The foundamental mode is either
TE111 or TMo1o dependenton R/L.

(b) R/L= % , the fundamental mode is TMo1o,
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8.18
(a) From the use of Green's theorem in two dimensions show that the TM and TE
modes in a waveguide defined by the boundary-value problems (8.34) and (8.36) are

orthogonal in the sense that
[ E..E.da=0 for A=
for TM modes, and a corresponding relation for H, for TE modes.

Orthogonality is a general property of the eigenfunctions of the wave equation. The

general two-dimensional equation is given by
[Vi+7 e, =0
where either

(p/1|S =0 TM modes

or

aﬂ =0 TE modes
on |

To prove orthogonality, note that ¢, and ¢ satisfy the equations
[Vi+7ie, =0, [Vi+7i]e, =0
Multiplying the first by ¢, and the second by ¢, and subtracting gives
[72-7 |00, =0,Vi0, -0, V}0,

Integrating this over the cross-sectional area, and using Green’s theorem yields

00, _, 99 }dl

(72-72)] p00a=] [0.Vie, ~0.Vip, Jda=—¢ {@, -]



where we have used an inward pointing normal direction. We now note that the right

hand side vanishes for either TM or TE boundary conditions. Thus, provided 7/; =2,
we end up with

[ o.0da=0 (77}
For non-degenerate eigenvalues, conclude that

J‘A(p#(pida:O for u#A1
so long as ¢, and ¢, are both TM modes (or are both TE modes). Note that

¢, =E,, forTM modes, while ¢, =H, for TE modes.

For degenerate eigenvalues, linearity of the wave equation guarantees that we may

find an orthogonal basis using, e.g., a Gram-Schmidt orthogonalization process.

(b) Prove that the relations (8.131)-(8.134) form a consistent set of normalization
conditions for the fields, including the circumstances when A is a TM mode and u

is a TE mode.
We start with relation (8.131), which states

[ E.E,.da=5,

where Et’ , may be either a TM or a TE mode. To handle this expression, we note

that the transverse fields for TM and TE modes are given by

T™: LA H-Llice, z-K
/4 Z EQ
(1)
TE: E =123, H, H=Lixg, z=£¢
¥ Z k
Hence for two TM modes, we end up with
£ -E da=—— [ V,E,, - VE, da=——| - E,, Fxqi_[ E,_VE, da
J.A (W __%J.A tza " Vit __m _Cﬁs 7,1 an _J.A 2AYt "z

The surface term vanishes because of Dirichlet boundary conditions, while the area

term may be simplified using V; E,.=- /21Ez, .- Hence we arrive at



[ E.E.d IEMEMda 0 for A#u )

When properly normalized for /1 = 1, this gives (8.131) for two TM modes. The case

of two TE modes is similar. We have

2 2
jAEME da=—§l/i;}2 (2xVH,,)-(2xVH, ) da

B TR U IR T T
7,,7//1

_ .[VHMVH da
7#]/2.

We have noted that 2-V, =0 identically (since the transverse gradient is orthogonal

to Z). The proof of orthogonality of two TE modes then follows using the same
integration method that was used above for the TM modes (but with E, replaced by

H,, and with 0H,/0n vanishing on the boundary). Finally, for one TE mode and

one TM mode, we have

[ E. E,da=2%] (VE,,)(2x9H,,)da

RO 7 S
u
uwk - .
=7 2.[ [Vthzxthz,ﬂ]'Zda
yﬂyﬂ,
= ﬂa)ijxEMVH ) Zda
7;17],
= ”wkcﬁEMVH dl =0
7;17],

This integral vanishes because E,, vanishes on the boundary. As a result, all TE

modes are orthogonal to all TM modes. Proper normalization then results in (8.131).
We now turn to relation (8.132), which states
1
[ H..-H,da= z 5.,
The best way to prove this is to note from (1) that
~ 1. -
Ht,), :ZZX Et,l

for either TM or TE modes, provided Z;is chosen accordingly. In this case
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Here we have made use of the fact that 2-E, vanishes because E, is transverse to

the Z direction. The last line follows from applying (8.131), which we proved
above.

The power flow relation (8.133)
1 = R . 1
E.[A(Et’)" X Ht,,u>' Zda :Zéﬂ”u

follows similarly. Specifically, we have

The relation (8.134) essentially normalizes the modes for the TM and TE case.
Examination of (2) for TM modes and (3) for TE modes indicates that the proper

normalization is

2
, _ 7
T™: [ E..E, da= oy
A
[ v v
TE: E,E, da=——22_5, =——*2
A 52
8.19

The figure at problem 8.19 shows a cross-sectional view of an infinitely long
rectangular waveguide with the center conductor of a coaxial the line extending
vertically a distance h intoits interior at z=0. The current along the probe

oscillates sinusoidally in time with frequency @, and its variation in space can be



approximated as 1(y)=1, sin[(%}(h - y)} . The thickness of the probe can be

neglected. The frequency is such that only the TE;g mode can propagate in the guide.

(a) Calculate the amplitudes for excitation of both TE and TM modes for all (m,n)
and show how the amplitudes dependon m and n for mn>>1 fora
fixed frequency w.

(b) For the propagating mode show that the power radiated in the positive z

direction is

212
P= Ky sinz(ﬁjsin“[@j
wkab a 2C

with an equal amount in the opposite direction. Here Kk is the wave number
for the TE1p mode.

(c) Discuss the modifications that occur if the guide, instead of running off to
infinity in both directions, is terminated with a perfectly conducting surface at
z=L.Whatvalues of L will maximize the power flow for a fixed current 1,?
What is the radiation resistance of the probe (defined as the ratio of power flow
to one-half the square of the current at the base of the probe) at maximum?

Sol:

(a)

E TG kel c
M =V x 2™
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v ab
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4, bothm,n=0
C =<2,eitherm,n=0
1,bothm,n=0
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(c) The original field is not modified. But an additional reflected field with phase
difference 7z is superimposed. Therefore interference will occur. The maximum

power will occur at constructive interference.
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E,o =2E in(a),so P, =4P in(a).
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8.20

An infinitely long rectangular waveguide has a coaxial line terminating in the short
side of the guide with the thin central conductor forming a semicircular loop of radius
R whose center is a height h above the floor of the guide, as shown in the
accompanying cross-sectional view. The half-loop is in the plane z = 0 and its radius

R is sufficiently small that the current can be taken as having a constant value |,

everywhere on the loop.

(a) Prove that to the extent that the current is constant around the half-loop, the TM



modes are not excited. Give a physical explanation of this lack of excitation.

The field in the waveguide can be written as

EC) =3 APEL)

A

where the coefficients Af) are given by Eq. (8.146):

@ _ Zif 7 E@qy_ Lif7. E®
Al = 2_[VJ EFd’x = 2j| Ed

Choose the bottom-left corner of the guide as the coordinate origin with the x-axis

along the edge a and the y-axis along the edge b.
I =1,(—singX+cosgy)
Here ¢ is the polar angle with respect to the center-of-the loop. Thus

Af)=_%ﬁ:2'o(—sin¢f<+cos¢y) () (Rdg) = — RIZI {sin¢{Ef)}x+COS¢{E,(5)}y}d¢

where {Ef)}x and {Ef)}y are X- and y- components of the eigen-field along the loop.

For TM waves, the electric field components are given by Eq. (8.135):

. 27m mz(Rcosg)| . |nz(h+Rsing)
R R R

{E(;)}y: 27N Sin{mﬂ(Rcos¢)}cos{n7z(h+RSin(zﬁ)}

Ymbr/ab a b

Here

Therefore,

A — ;zRI\/Z_ ,[””/22{_ m sln¢cos(m”Racos¢jsin[ z(h +bRsm¢)j+bCOS¢Sln(m7zRacos¢jcos[nfr(h +bRsin¢)j}d¢
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N 2| 7R d¢ a b 7R a dg b
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7!/2d¢ a b

1 Z (m;chos¢j . nz(h+Rsing) o
———0Tm_gin sin
Ymab a b

=0

$=—r/2

Hence, no TM modes are excited. This is because that a circular current in the



transverse plane will always result in a non-vanishing longitudinal component of H ,
ie, H,#0.

(b) Determine the amplitude for the lowest TE mode in the guide and show that its
value is independent of the height h.

For TE waves,

{E,ﬁ)} L cos(m”Rcoszin nz (h+Rsing)
© Ymby/ab a b

= h+ Rsi
{E,ffn)} __27m Sin(mﬁRcos;ﬁ)COS nz (h+Rsing)
v y.adab a b

with the normalization reduced by a factor of V2 ifm=0orn=0. Thus

A zRI,Z,. _(” 2 {nSm¢cos(m;rRacos¢jSin[n7z(h+bRSIn¢)]+ " COS¢Sm[m;rRacosqﬁjcos[n7r(h+bRsin¢)J}d¢

The lowest modes (M =1, n = 0):
7RI,Z /2 . ( mRcos¢ zRI,Z, , 7R
AL __ T e%0 {cosqﬁsm(—j}d¢:——’ ) | 2=
' VioN 2a’h I " a Y10V 2a’h \a

where y,, =7z /a. Here we have used the integral representation of Bessel functions:

T . . . /2 .
JO sin @sin(Xxsin0)d6 = J:ﬁ/zcos¢s1n(Xcos¢)d¢ =J,(x)
The amplitude is independent of the height h. For R« a,

7R 7R 7z3R2|0210
J|—|r—=A r——F—
1( a j 2a M 7,80

(c) Show that the power radiated in either direction in the lowest TE mode is

2
p_ I li,a (”Rj
16 b
where Z is the wave impedance of the TE, mode. Here assume R < a,b.

The average power radiated in either direction



In this case,



