9.3

Two halves of a spherical metallic shell of radius R and infinite conductivity are
separated by a very small insulating gap. An alternating potential is applied between
the two halves of the sphere so that the potentials are +V coswt . In the
long-wavelength limit, find the radiation fields, the angular distribution of radiated

power, and the total radiated power from the sphere.
Sol:

According to Jackson (3.36) and replace (r/a)I by (a/r)'”, a by R.Therefore

cp(r,e):vB(?Tpl(cose)_%@f P3(c050)+%($j6F’S(cosﬁ)+..}

The potential dominated by the dipole term
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Compare with the potential of an electric dipole p= pZ
1 pcosé

2

(r.0)= dre, T
0

we infer the dipole moment of the sphere to be
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Thus, the radiation fields are given by Jackson (9.19)
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9.6
(a) Starting from the general expression (9.2) for A and the corresponding

!

expression for @, expand both R = |X - )‘(’| and t'=t—R/c to first order in |X'|/r

to obtain the electric dipole potentials for arbitrary time variation
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where P, =Pp(t'=t—r/c) is the dipole moment evaluated at the retarded time

measured from the origin.

Sol.
The scalar potential is given by
X.t—|x-X'|/c
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We use the expansion
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where t , =t—r/c.Since pisa functionof t’', we make the expansion
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Then (1) is expanded as



where the expressions for charge and electric dipole moment are
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By charge conservation, Q is independent of time, so the subscript Q. 1is
superfluous. Dropping the static Coulomb potential, which does not radiate, then

gives
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We only need to keep the lowest order behavior for the vector potential
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Using integration by parts, we have
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(b) Calculate the dipole electric and magnetic fields directly from these potentials and
show that
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Sol.

Weuse B=VxA to obtain the magnetic field, where the vector potential is given by
(3). Note that the electric dipole p,, in (3) is a function of the retarded time



rjret = F)(t—l’/c)

By the chain rule, we have
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Since Vr =1, the magnetic field becomes
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We use (2) and (3) to obtain the expression for the electric field.
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(c) Show explicitly how you can go back and forth between these results and the

harmonic fields of (9.18) by the substitutions —iw <> 0/t and pe™ ™ < p,, (t') .

Sol.
With the substitution
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The magnetic field (4) becomes
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The electric field (5) becomes



To go in the other direction, we simply read theses equations backwards.

9.14

An antenna consists of a circular loop of wire of radius a located inthe x-y

plane with its center at the origin. The current in the wire is

| =1,cosat =Rel "

(a) Find the expressions for E, H in the radiation zone without approximations

as to the magnitude of ka.Determine the power radiated per unit solid angle.

(b) What is the lowest non-vanishing multipole moment (Q, , or M, ) ? Evaluate

this moment in the limit ka <<1
Sol:

(a) |(t)= IOCOSa)t=Re[IoE_iH)t]
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a is a normalization factor determined by '[j -da=1I

Use Jackson (9.149) and
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9.16 A thin linear antenna of length d is excited in such a way that the sinusoidal

current makes a full wavelength of oscillation as shown in the figure.

(a) Calculate exactly the power radiated per unit solid angle and plot the angular

distribution of radiation.

Sol.

Note that the current flows in opposite directions in the top and bottom half of this

antenna. As a result, we may write the source current density as

J(z)=1lsin(kz)5(x)o(y)®(d/2-|z))



where k = 2—”
d

In the radiation zone, the vector potential is given by
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Since the current source is odd under z — -z, this integral may be written as
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In the radiation zone, the magnetic field is
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Where we have used fixZ=FfxZ= —(3 sin @ . Therefore the radiated power is
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It looks like a quadrupole pattern.

(b) Determine the total power radiated and find a numerical value for the radiation
resistance.

Sol.

The total radiated power is obtained by integrating the angular distribution over the

solid angle
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Using P=—R Iz,the radiation resistance is
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9.17

Treat the linear antenna of Problem 9.16 by the multipole expansion method.

(a)

(b)

(c)

Sol:

(a)

Calculate the multipole moments (electric dipole, magnetic dipole, and electric
guadrupole) exactly and in the long-wavelength approximation.

Compare the shape of the angular distribution of radiated power for the lowest
non-vanishing multipole with the exact distribution of Problem 9.16.
Determine the total power radiated for the lowest multipole and the
corresponding radiation resistance using both multipole moments from part a.

compare with Problem 9.16b. Is there a paradox here?

From Jackson (9.9) and (9.13),

due to electric dipole moment.
From Jackson (9.9) and (9.33)
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Source X only in z direction the same with J .
m=0

A=0

Due to magnetic dipole.



Then, from Jackson (9.38).
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(b) Electric quadrupole, the lowest non-vanishing multipole.
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9.22 A spherical hole of radius a in a conducting medium can serve as an
electromagnetic resonant cavity.

(a) Assuming infinite conductivity, determine the transcendental equations for the
characteristic frequencies @, of the cavity for TE and TM modes.

Sol.

Because of the spherical symmetry, it is natural to describe the modes of the spherical
cavity in terms of a vector spherical wave expansion. These waves fall into either TE
or TM modes, depending on whether F-E=0 or r-H =0, respectively. The TE (or
magnetic multipole) modes are given by

(1)

where we have chosen the spherical Bessel function j, (kr) since it is regular at
r=0. For a perfect conductor, we impose the boundary condition H, =0 and

E,=0 at r=a.More precisely, we demand

fF-H| =0, FxE

r=a

These are equivalent to the condition j (kr):O , and leads to the quantization

Kym = X, /@ where X, is the n-th zero of the spherical Bessel function j,. The

TE,, ~ frequencies are thus

nlm

O =225 i (%,)=0, 121, |m|<I

Each frequency specified by | and n is (2I+1)-fold degenerate, with azimuthal
quantum number labeled by m.

The TM (or electric multipole) modes are similar. The modes themselves are given by



2)

This time, the H, =0 boundary condition is automatic, while the E =0 condition

gives
rx (V[ (k) X, ])| =0
It may be simplified using
(V)= (r V)V (1IN =9 (1010727 =9 (rv) - S
With V = j, (kr)X,, and 7-X,, =0, we have
rx(vx[j,(kr)x,m]):—g(rjl(kr))x,m 3)

Therefore the E, =0 boundary condition leads to the TM =~ frequencies

v, =" i[le(x)] =0, 121, |m/<I

a dx

Z=Y1n

The y, correspond to zeros of [le (x)}’ or equivalently j, (X)+Xj, ().

(b) Calculate numerical values for the wavelength A, in units of the radius a for the

four lowest modes for TE and TM waves.

Sol.

The numerical values for the wavelengths are obtained from the zeros X, and vy, .
For TE,, modes, the first four zeros of j,(x) are

X, =4.4934, Xx,,=5.7635, X;,=69879, Xx,=7.7253

Since k,,=X,/a and A, =27/k,,,wehave A /a=2x/x, or

nim >

A =1.398, Aom =1.090, A =0.899, Aot =0.813
a a a a

All these modes are (2I+1)-fold degenerate.




For TM,,, modes, the first four zeros of [le (X)] are

y, =2.7437, 'y, =3.8702, vy, =49734, vy, =6.0619

With corresponding wavelengths

A =2.290, Aon =1.623, Aan =1.263, Aran =1.036
a a a a

Note that the next mode, given by y,, =6.1168 is nearly degenerate with vy,, .

(c) Calculate explicitly the electric and magnetic fields inside the cavity for the lowest
TE and lowest TM mode.

Sol.
The lowest TE and TM modes both have | = 1. Thus we begin with an overview of |

= 1 vector spherical harmonics
X, = 1 LY

Im \/E m

It is natural to write the angular momentum operator L in terms of raising and
lowering components
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A vector with components (V,,V_,V,) can be converted to spherical coordinates

(Vr ,VH,V¢) according to

=—(V.e™+V.e")sin6+V, cos 6
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Using the explicit form of the spherical harmonics then gives
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From (1) for TE,, modes, we have
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The m = 0 mode is
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Note that we have used the spherical Bessel function identity
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Even more explicitly, we have
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The m =1 mode is given by
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We now turn to the lowest TM mode, which is the TM
(2)

mode with fields given by
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The roles of E and H are interchanged between the TE and TM modes. In
particular, the TM,, ~ fields may be obtained from the TE,,, fields of (5), (6) and

(7) through the substitution

11m
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This is the action of electric-magnetic duality. The TM,,,
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modes correspond to
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The wavenumbers k., are quantized differently for the TE versus the TM modes.

9.23

The spherical resonant cavity of Problem 9.22 has non-permeable walls of large, but
finite, conductivity. In the approximation that the skin depth & is small compared
to the cavity radius a, show that the Q of the cavity, defined by equation (8.86), is
given by

Q =% for all TE modes

2

Q :3(1 - I+ l)j for TM modes
o Xim

where X2 =(a/c)a,, for TM modes.
Sol:
. 80 =2 ,Ll() =12 . . .
Energy density u =?‘E‘ +T‘H‘ and energy is equally distributed between E
and H . Thus for TE modes we may immediately write down
R — 2

E‘ ——j kr)z‘le‘

The stored energy

U= ﬂojj, (kr)’ 2drdQ—%j j(kr ) r2drdQ
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H 2
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The power loss is given in terms of the tangential magnetic field at the conducting
surface
P=_
200

Using h= —(éj@ x j, (kr)X,
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Where ¢, isthe n-th positive zero for

[Xp JI(X)I =0

Setting p=1 for TM modes, and using the notation y, , to denote the n-th zero of

[x” j,(x)] =0, the expression for the stored energy becomes
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