10.2
Electromagnetic radiation with elliptic polarization, descried (in the notation of

Section 7.2) by the polarization vector,
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is scattered by a perfectly conduction sphere of radius a. Generalize the amplitude

g =

(E+ + re“"a)

in the scattering cross section (10.71), which appliesfor r=0 or r =, and

calculate the cross section for scattering in the long-wavelength limit. Show that
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Compare with Problem 10.1.
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From Jackson (10.71)
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10.3 A solid uniform sphere of radius R and conductivity o acts as a scatterer of a
plane-wave beam of unpolarized radiation of frequency @, with wR/c<1. The

conductivity is large enough that the skin depth ¢ is small comparedto R.

(a) Justify and use a magnetostatic scalar potential to determine the magnetic field

around the sphere, assuming the conductivity is infinite. (Remember that @w=0.)

Sol.

Note that for harmonic fields (@ # 0) both the magnetic field and electric field must
vanish inside a perfect conductor. There are no source currents outside the solid
sphere. As a result of J =0, and since we are in the long wavelength limit kR <1

(so we may work with a quasi-static magnetic field with V-B~0), we may use a
magnetostatic scalar potential B = —?CDM , at least in the vicinity (but always outside)
of the sphere. Immediately outside the sphere, we take a Legendre expansion
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Note that we take the incident magnetic field to point along the z direction. Since

electromagnetic waves are transverse, this means the incident wave is traveling in



the x-y plane. Since the perpendicular magnetic field must vanish at the surface
r =R of the conducting sphere, we have
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Since the Legendre polynomials form an orthogonal set, this implies that all ¢,

must vanish for | #1, while

Therefore
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The resulting magnetic field is
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The second term is that of a magnetic dipole of strength
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This agrees with the conducting sphere result of (10.13). When combined with the
electric dipole term, this gives the long wavelength scattering cross section of
(10.14).

(b) Use the technique of Section 8.1 to determine the absorption cross section of the
sphere. Show that it varies as (a))l/2 provided o isindependent of frequency.

Sol.
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where we use B given in (1), and evaluate the field at the surface of the conductor.
Integrating this over the sphere gives
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For normalization, the incident flux is
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The absorption cross section
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Using 0 =./2/ u,ow gives
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which is proportional to (a))l/2 provided that o isindependent of frequency.

10.7

Discuss the scattering of a plane wave of electromagnetic radiation by a

nonpermeable, dielectric sphere of radius a and dielectric const &, .

(a) By finding the fields inside the sphere and matching to the incident plus
scattered wave outside the sphere, determine without any restriction on ka
the multipole coefficients in the scattered wave. Define suit phase shifts for the
problem.

(b) Consider the long-wavelength limit (ka << 1) and determine explicitly the
differential and total scattering cross sections. Compare your results with those
of Section 10.1.B.

(c) Inthelimit & — oo compare your results to those for the perfectly conduction
sphere.

Sol:

(a) For the spherical wave analysis, we start with the outside solution. Which is a

combination of the incident and scattered wave
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Inside the dielectric sphere, we have no sources, and only a modified dielectric
constant ¢, . As a result, the waves inside the sphere must be ordinary spherical

waves, however with modified wave number
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Defining also
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the spherical waves inside the dielectric sphere may be parameterized by
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For the perpendicular fields,

This indicates that only the curl termsin E and H survive in the
perpendicular direction. For the parallel fields, on the other hand, both terms

contribute. In particular
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and



where we have used - X, =0

. Matching linearly independent terms in the

inside (5) and outside (4) solutions gives
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We note that two of the six equations are redundant (this also happened in the
case of plane waves reflecting and refracting off of a plane dielectric boundary).
This allows us to solve four equations for four unknowns «, £, ac and a,.
Since we are only directly interested in the multipole coefficients « and S,
we eliminate a. and a,, from the above to obtain the solution
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We now note that (at least for real ¢, ) the above expressions are of the form of
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a ratio of a complex quantity divided by its complex conjugate. This indicates
that the fractions have unit magnitude, and can be written in terms of real
phase shifts
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With a bit of simplification, these can be rewritten in the form
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where the coefficients B, and B/ are
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and may be thought of as parametrizing the matching conditions at the

boundary of dielectric sphere. Note that the expressions for tang, and B,

are indentical to that from the quantum mechanical scattering problem. The



presence of the primed quantities is the result of vector waves as opposed to
scalar waves.

(b) For ka<<1 onlythe lowest (I =1) phase shift is important. In this case, we
may approximate the spherical Bessel functions
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The multipole expansions are then approximated by
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We see that only the S, (electric dipole) coefficient dominates at low energies.

The scattering cross section is
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