11.3
Show explicitly that two successive Lorentz transformations in the same direction are
equivalent to a single Lorentz transformation with a velocity
vV, +V,

T 1+ vy, /c?)
This is an alternative way to derive the parallel-velocity addition law.
Sol:
Choose a coordinate system K’ moves with a velocity v =v,X relativeto K,and

another coordinate system K" moves with a velocity vV =v,X relativeto K.

Therefore,
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where v=

11.4

A possible clock is shown in the figure. It consists of a flashtube F and a photocell P
shielded so that each views only the mirror M, located a distance d away, and
mounted rigidly with respect to the flashtube-photocell assembly. The electronic
innards of the box are such that when the photocell responds to a light flash from the
mirror, the flashtube is triggered with a negligible delay and emits a short flash toward
the mirror. The clock thus "ticks" once every ( 2d /¢ ) seconds when at rest.

(a) Suppose that the clock moves with a uniform velocity v, perpendicular to the line
from PF to M, relative to an observer. Using the second postulate of relativity, show
by explicit geometrical or algebraic construction that the observer sees the relativistic
time dilatation as the clock moves by.

(b) Suppose that the clock moves with a velocity v parallel to the line from PF to M.
Verify that here, too, the clock is observed to tick more slowly, by the same time
dilatation factor.

Sol:

(a)

The perpendicular motion is fairly easy to handle. If the box moves to the right at a
uniform velocity v, we have the situation
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Denoting the round-trip time T, the box moves a horizontal distance of vT during
one complete period. Using a bit of geometry, the distance D traveled by a beam of
light from the box to the mirror and back is simply

D = 2,/d2 + (VT /2)? =/(2d)% + (VT)? .

For a constant speed of light, this gives T =D/c=>cT =+/(2d)* + (VT)?.



Solving this for T gives the familiar time dilatation expression T =T , where

1 and To=ﬁ.
c

}/ =
J1-(v/c)?
(b)
Here, consider a spacetime diagram
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Here the box (and mirror) is moving in its parallel direction. We ought to know that
this gives rise to a length contraction d — d/y. However, for now, we simply

suppose that the box—mirror contraption appears to have length d’. The light beam
reflects at position y, at time t, , and is recaptured by the box at time T. We first
work out t algebraically. From the figure, the mirror’s position is given by
y, =d’+vt,, while the light ray travels according to y, =ct.. Solving this set of
equations gives
d’ d'/c
y, = = .
" 1l-v/c " 1-vlic

On the return, the light ray is captured by the box at time T and position y=VT .
Noting that the return path of the light ray is given by

!

l1-v/c

—Ct.

y=y —c(t-t)=2y —ct=

2d'/¢c  ,2d"

We equate thisto vI” toobtain T=——7—
1-v°/c c



Here, we realize that if lengths are contracted, d’'=d/y, then

2d’ 2d . . . .
2 =y — = yT, gives the same time dilatation factor as part (a).
c Cc

T=y

Alternatively, by demanding that the time dilatation factor is universal, we may obtain
the length contraction relation d’=d/y as a result of this computation.

11.5

A coordinate system K’ moves with a velocity V relative to another system K.
In K’ a particle has a velocity G’ and an acceleration a'. Find the Lorentz
transformation law for accelerations, and show that in the system K the

components of acceleration parallel and perpendicularto V are
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Sol:

Instead of working directly with perpendicular and parallel components, we may
start with a particular boost in the X—t direction, and then generalize our results.

We thus take a boost for the form

xozy(xo +/¥x’j
x:y[x’+ﬂx°J
y=y
z2=17

In frame K, the path of a particle is specified by the vector function )‘((XO), while in

[
frame K/, thisis instead X'(XO ) . 3-velocities and 3-accelerations are then defined

in a frame dependent manner



Frame K:
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Frame K':

u=c

ox'

u=c—

ox°

To transform between the two frames, we need not just the transformation of the

!

3-vectors, but also the transformation relating times x° and x° . Noting from
X’ = y(xo + /B’x’)

x:y[x’+ﬂx°)
y=y'

z=17'

!
that a particle following a path X’(XO j yields a time relation

cofe ()

we may write

A
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The inverse relation is simply
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This useful expression is basically all we need. We start with velocities
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writing pu’ = B-0', and noting that the x direction is the parallel direction while

the Yy direction is the perpendicular direction, it is easy to see that these velocity
transformations may be written as
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We now go on to accelerations, From u, and u,, we have

a:CduX: C d u +cp

IS 7[1+'Bu%jdx°’1+ﬂuc;
N 0 v
_7(1+ﬂu%j (1+ﬂ“c;j2
-5k,

o]
_ 3,
: a (1+ A %T




!
a :Cduy C d uy

SR y(1+ﬂu%) dx° ;/[1+ ,BUC;j
- ft
TP (wn]

o Pl - i)

C
3
2 ﬂuy
4 (1+ c )
. . . . a .
It is straightforward to convert the expression for & into one for . The result is
g

7(1+B | ‘%T

For the perpendicular direction, we have to be a bit more clever. Noting that x

a =

componentsin a, are related to ,B-(---),while Yy components are directly

related to the L direction, we have

a +al(p-u)-u (5-a)

a, = G0 L
2 -u
y (1+ %j
Use of the BAC-CAB rule finally gives
a, + ,Bx 7(8' u )
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11.6

Assume that a rocket ship leaves the earth in the year 2100. One of a set of twins born
in 2080 remains on earth; the other rides in the rocket. The rocket ship is so
constructed that it has an acceleration g in its own rest frame (this makes the
occupants feel at home). It accelerates in a straight-line path for 5 years (by its own
clocks), decelerates at the same rate for 5 more years, turns around, accelerates for 5
years, decelerates for 5 years, and lands on earth. The twin in the rocket is 40 years
old. (a) What year is it on earth? (b) How far away from the earth did the rocket ship



travel?

Sol:
(a)

To calculate the time interval in the earth frame K along the first acceleration leg,

T = 5f;/(r)drz T;Zdr ----- (1)
0 0 1_U7(2T)
C

we require u(z). To find u(z), we use the parallel-component result of Problem 11.5
for the case that K’ is the instantaneously co-moving frame of the rocket and K is

the earth frame. Then, dt' =dz and u|;=0,and
du 1 du 1 du g

—_—_——-—— = —— = ————- 2
dt y°dt p°’de p° @)

Also, due to time dilation between the earth and the instantaneously co-moving rocket

frameitis dt=y drz,and therefore
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Insertion into (1) allows us to calculate the travel time of the first leg observed in K,
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By symmetry, all other legs give the same result, yielding a travel time observed in K

=84a

c



of T =4T =336a. Thus, the year of return to earth is 2436.

Note that in the analysis the instantaneously co-moving frame (ICMF) of the rocket
K’ is an inertial frame; for that reason the presented analysis is valid. As the rocket
moves along, it marks the origins of an infinite sequence of different ICMFs. The
rocket itself is not an inertial frame, of course, but the rocket frame never enters in our
analysis.

(b)

The travel distance in K along the first leg

84a

L = Tj u(t)dt= [ u(t)dt

t=0
requires knowledge of the rocket velocity u(t) observed in K. From (2) it follows
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Insertion into the previous equation yields
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Since % > 1, the square-root can be developed, yielding with T; = 84a.



2 ¢ 2

) c
~CT +—| ———1| ~cT — — =(84-0.969)lightyears
el g LZng ) g

Since all legs have, for symmetry, the same length, we find a total travel distance of

L=2L, =166 lightyears, which is almost as far as a beam of light would travel

(which would be 168 lightyears).

11.9
An infinitesimal Lorentz transformation and its inverse can be written as
X =(g* +g“ﬂ)xﬁ

a _ af /aﬂ)!
X _(g +&"7 )X,

where €% and &% areinfinitesimal.

(@) Show from the definition of the inverse that &% =—g% .

(b) Show from the preservation of the norm that &% =—g/.
p

(c) By writing the transformation in terms of contravariant components on both

off

sides of the equation, show that & is equivalent to the matrix L (11.93).

Sol:
(a) We consider the effect of the consecutive application of the transformation

given in the problem and its inverse,
X" :(g o4 glp )x’ﬂ

G s

=(g7 +& )y, (07 +& K,
=(g7 + & o, (07 +&7 g, X"

Since the two consecutive transformations are the inverse of each other, it also

na

is xX"*=06%,x" forall X.Bycomparison with the previous equation, we can

write
5% =(9" +& ), 07+ )as,

= [50(7(9%5 + 57§)+ gmﬂgﬁy (g ” 4 ‘975)]960

= [9“5 +&% + 5’”‘ﬂ<5ﬂ5 + gﬂyé‘yﬁ) P

= [g W ye® 44 g,aﬂgﬂygyﬁ]g&]

]9577

=0+ ggﬂ(é‘aé + 8'(15): 0%y + (gan + 5'0['7)

Note that due to the infinitesimal character of the elements of the &-tensors,

:[ga5 +8a5 +g!a§



(b)

(c)

we were allowed to drop terms quadratic in them. From the last line it follows

that ¢“ =—¢'*, q.ed.
Beginning with norm conservation, we find by application of the infinitesimal

transformation law specified in the problem,

= (g~ +g“”)’)xﬁx; = (g~ +g“ﬁ)xﬁgwx’7
= (g”‘” + g”‘”)xﬂgay(g”s + 375)x5

(97 + &g, (07 + & o
=(g” + &% X&f + gmy(sﬁ)ggﬂxﬁx’7
=(g” + &% )[(50[5 +9,,&" )g . ]xﬁx’7
= (g“ﬂ +e&” Xgm] +9,,6"9s, )xﬂx”

—(58 4+ 5P o7 s
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=X, X’ + (gﬂ‘sg&,l +e79,, )xﬂx’7

=X X" + (g’j‘”gm7 +e74,, )xﬁx’7

=X X+ (e + £ )gmixﬂx’7

= XX, + (gﬂ“ + g“ﬂ)xaxﬂ

Again, due to the infinitesimal character of the elements of the &-tensors we

were allowed to drop terms quadratic in them. Since the result must be valid for

aﬂ:

all x, it follows that ¢ -7 q.e.d.

Itis
X' = (g“ﬂ +g“/’)xﬂ = (g“/’ +g“/’)gﬂ7x7 = (5"3 +g“ﬁgﬂy)x7

Also, an infinitesimal Lorentz transformation matrix with generator L is of the
form A=exp(L)=1+ L. Inindex notation, the effect of such a transformation is

X' =A% X = (5‘9 + Lay)XV

Comparison of the last two equations shows

_ P
LY, =& 9,

which is equivalent to L%,g7 = &g, 9" =75, = &“.

11.16
In the rest frame of a conducting medium the current density satisfies Ohm's law

J'=0cE’, where o is the conductivity and primes denote quantities in the rest
frame.



(a) Taking into account the possibility of convection current as well as conduction
current, show that the covariant generalization of Ohm's law is

1 o
a B a ap
J ——Cz(Uﬂ\] )U ——CF Uﬂ’

where U“ is the 4-velocity of the medium.
(b) Show that if the medium has a velocity v=c/£ with respect to some inertial

frame that the 3-vector current in that frame is

J=yo[E+BxB-B(B-E)]+pv,
where p is the charge density observed in that frame.

(c) If the medium is uncharged in its rest frame ( o’ =0), what is the charge density

and the expression for J in the frame of part b? This is the relativistic generalization
of the equation J =c(E+VxB) (seep. 320).

Sol:

(a)

There are several methods for obtaining the covariant generalization of Ohm’s law.
We start by taking the rest frame result J’' = oE’and converting 3-vectors into
4-vectors. To do so, we note that the rest frame may be defined as the frame where the
4-velocity has the form

U'“=(c,0)

This allows us to realize the electric field as a contraction of the Maxwell field
strength tensor with the 4-velocity

F*U’ =(0,cE")
Thus the right hand side of Ohm’s law can be written as

(0,6E") = % SV (1)



The left hand side of Ohm’s law ought to be the 3-vector current density. It is natural

to take J’— J’*. However, this contains more than the 3-current, since it includes
the charge density p’ as well. Because p’ is not involved in Ohm’s law, we need to

subtract it out. This can be done by noting that J"'U’ = c®U’*. Hence

I ’ 1 YR ’

0,3 =J ﬂ—?(J U 7 e-(2)

Combining (1) and (2) gives the covariant form of Ohm’s law
1 v _ o v

J”—C—Z(J u, = —F"U, -(3)

where we have now dropped all primes, since the equation is in covariant form (ie
frame independent). Note that this can equivalently be written as

H _ E M i V] H
»=2F VUV+CZ(J u, P,
where the first term on the right corresponds to the conduction current and the second

to the convection current (charge times velocity, where charge is given by the Lorentz

invariant J'U and the velocity is given by U*).

(b)

Working in the (inertial) lab frame, we take
U*=(rc,yv),d" =(cp,J)
Substituting this into (3) and noting that
1 (
—J'U = -
¢t pr

we obtain the time component equation



~Vyip+yN-J=opv-
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as well as the space components equation

2
_ _ _ 1 B
J—7?pv+ 2 9(7-3) = oy(E + =7 x B) -—(5)
C C

Solving (4) for v-J and substituting this into (5) gives

J=oy[E+BxB- (B E)l+ pv--(6)

This gives an explicit realization of the conduction and convection currents (the latter
being the pv term in the above).

(©)
Note that if the medium is uncharged in its rest frame, the 4-current must satisfy the

relation J"U, =0. In this case, the covariant Ohm’s law (3) reduces to

NE :%F”VUV

Taking J“=(cp,J)and U* =(cy,Vy) in the above then gives directly

p=""(B-E).I=oy(E+}xB)
It is straightforward to check that this is consistent with (6) obtained above.

11.19

A particle of mass M and 4-momentun P decays into two particles of masses

m, and m,.

(a) Use the conservation of energy and momentum in the form, p, =P - p,, and
the invariance of scalar products of 4-vectors to show that the total energy of

the first particle in the rest frame of the decaying particle is



(b)

(c)

Sol:

(a)

_M%+m?+m)}
2M
and that E, is obtained by interchanging m, and m,.

E,

Show that the kinetic energy T, of the i-th particle in the same frames is
T =AM [1—ﬂ—ﬂJ

M  2M
where AM =M —m, —m, is the mass excess or Q value of the process.
The charged pi-meson (M =139.6 MeV ) decays into a mu-meson
(m, =105.7 MeV ) and a neutrino (m, =0 MeV ). Calculate the kinetic energies
of the mu-meson and the neutrino in the pi-meson’s rest frame. The unique
kinetic energy of the muon is the signature of a two-body decay. It entered
importantly in the discovery of the pi-meson in photographic emulsions by
Powell and coworkers in 1947.

From Jackson 11.152

E(ct,x,y,z)=-2 arivt—2) +F a7

3 €1 3
\/rJ.ZH’Z(Vt*Z)Z \/rJ.z*}’z(Vt*Z)z

qr

r 2+ (vi-z)?

B(ct,x,y,z)=2xF,

Where T, = (X, y,O). To see the equivalence, perform a suitable translation and

a rotation about the 7z -axis to get back to eq. 11.152.
To obtain the limit ¥ — o0, we first consider the electric field. Considering the

denominator, we see that the field generally only is appreciable if |Vt - Z| is of
order r /y ofless. Thus, inthe limit » — o non-zero fields only exist if
|Vt - Z| <<Tr,.Thus, in thelimit y — 00 z-component of the electric field is

negligible. Next, we observe that

l3—>oo,vt—z:0
! =1 n in the limit y — oo
2 2 2
r°+yvt—z —=—>0vt-z20
\/J_ 7’( ) }/2(Vt—2)3

Further, at fixed time the integral over z is



(b)

J. AN L S R T

This result can, of course, also obtained by considering a fixed position and
integrating over ct. Thus, in the limit y —> o

A zid(ct—z)
\/rf +yivt-zf N

and therefore

E(ct,x,y,z)=Tr, gd(ct—z)
“r,
B(ct,x,y,2)= 2xrl—cj§(ct—z)
rl
V-E =47p, For the above E, itis

V.E= v[ r—(i (ct—z)} 2q§(ct—z){§x(x jy ]Jr%(xZIyZH:O

unless 1, =0 and z=ct.Thus, V-E is of the form
V-E =445°(r )o(ct - 2)
with a constant f that we can determine by integrating this equation over an

infinitesimal spherical volume centered around the particle location (0,0, Ct):
_[V Edxdyd(ct - z _[47zf52 F, )5(ct — z)dxdyd(ct - z)
= § E-da = 4f

Since the field is localized to the plane ct =z, the area integral only yields
contributions from a thin azimuthal band in the ct=12z plane. We can therefore

write the area integral in the form

[ L-o F, fq S(ct—z)-r d(ct—z)dg = 4af
L

Ct—z=-¢

q=f
There, ¢ isaninfinitesimal length. Thus, from the given field alone we have
derived that

V-E = 4465%(r, )5(ct - z)
By Gauss’s law, it must also be V- E= 47p . Thus, the charge density for the
given field is p(X)=q5?(F, )5(ct — ). The zero-th component of the
four-current producing the field in part a) must therefore be

J°=cqs?(r, )s(ct - z)

This is in agreement with the 0-component of the current specified in the



problem.
V-B =0: The validity can be verified explicitly for locations X # (0,0, Ct). Itis
then concluded that V-B =47g95%(F, )d(ct — z). The constant g is determined

via a small volume integral,
J'Vo Bdxdyd(ct—z)= _[47zg52(fl)5(ct —z)dxdyd(ct —z)
= § B-da =4y

Since the B -field is also localized to the plane ct =z, the area integral is, with
an infinitesimal ¢,

jgda= [* (rj)%&(ct— 2)-rd(ct—z)dg =0

Thus, itis g=0,anditis, as required, V- B=0 everywhere. We conclude

that the B -field given in a) is consistent with Gauss’s law for B.

vxB_ O E_-%3
oct C .

By direct calculation using the given fields, it is found that

B — ¥ X S'(ct — v S'(ct — 7 —7).
VxB=%25 (ct—z)+y 5o (ct—z)+28(ct—2)-0
where

5'(ct - z):%é(x%
X=Ct—z

Also, it is found that
%E = 2%5’(ct ~2)+§-%6'(ct—2)

1 rLZ
so that V x I§—iE =0, unless 1, =0 and z=ct.Thus, Vx I§—iE

oct oct
must be of the form
Vx B—%E R (r, )o(ct—2)
with a vector constant h to be determined. We note that due to the cylindrical
symmetry of the fields on the left side of the equation, the right side must have
cylindrical symmetry as well. We conclude that h can only pointin the z
-direction, and thus

B R
VxB—aE:zhy(rl)&(ct—z)

with a scalar constant h to be determined. To find N , we consider the area
integral of that over a small disk centered around the location (0,0, Ct) with



(c)

area vector in the + z -direction. Using Stokes’s theorem, the left side yields,

with the given electric and magnetic fields,

J[Vx B—%Ej-da=§l§-df—j%l§-(2da)=47zq5(ct— 2)
Then area integral of the right side,

J'ihdz(ﬁ)é(ct ~2)-7da=hs(ct-z)

Comparing the last two equations, we see h=4zq, and therefore
VB —%E — 2425°(r, ) (ct - 2)

Note that this result is obtained solely from the given fields. By
vxB- L E=%;

Maxwell-Ampere’s law, it must in addition be act C .By
comparison we see that the current density must be
J =2qc5%(r, )o(ct - 2)
This is in agreement with the spatial components of the current specified in the
problem.
VxE —i B=0:

oct
For locations X # (0,0, Ct), validity of Faraday’s law can be shown by direct
calculation. To verify consistency at the particle location, consider the area
integral of the field-side of Faraday’s law over a small disk centered around the
location (0,0, Ct) with area vector in the + z -direction. Using Stokes’s theorem,

from the given electric and magnetic fields it is, finally and thankfully, found that
= = 0 = (a
E-dl +| —B-(Zda)=0

i; -[act ( )

Combining the above results, the four-current J“ that is consistent with the
given fields and with Maxwell’s equations is
3%(pc, 7)=(3°,3)= 2qc5%(r, )5 (ct — 21, V)
To derive the fields from the potentials, use
B=VxA and E=—iA—V'A°
oct
or equivalently,
F¥ =0"A -3/ A" =(i,—vj-(A°, A)
oct

and



For A“ =-2q4(ct - z)In(4r, 1,0,0,1) = —2q5(ct - z)In(ﬂm/xz +y? X1,0,0,1), we find

E, = 3'A° - 0°Al = 2q5(ct - z)%ln(/h/xz Ty ): 2q5(ct - 2)—
-

L

E, = 0°A°— 0°A = 2q5(ct - z)%ln(,wx2 +y? ): 2q5(ct - Z)r_y2

1
E,=0°A"-0°A°=2q In(/h/xz +y? [i+i}5(ct ~2)=0

0z oct

B, = 0°A? — 3?A° = —2q5(ct z)%ln(/h/xz +y? ): —2q5(ct—2)-%
-

1

B, = 6'A° — 0°A' = 2q5(ct - z)%ln(/h/xz +y? ): 2q5(ct—2)—
-

L
B, =0*A'-0'A* =0

which agrees with the fields specified in part a).

For

A" =-2q0(ct - z)0,V, In(4r, ))= —290(ct — z)In(Ar, {Oiz > ,Oj

X y
=-2 -2)I
q0(ct - z) n(/lrL)(O, T ey ,Oj

we find

0 X
E =0'A°—0°A = 2q = -2 @(ct — 2) = 2q5(ct — 2 )
; 9% (ct—z)=2q05(c Z)rz

1 1
8
E, =0°A° —°A’ =202 - O(ct - 2) = 205(ct - )5
" © oct r
E,=0°A"-0°A’=0
_A3A2  A2A3 _ X 0 _ y
B, =0°A* - 9°A’ =2q— —0(ct —z)=2q5(ct - 2)-5
"~ oct r
B, =o0'A°— oA =292 2 e(ct - 2) = 2q5(ct - 2) -5,
.~ act r

0 X 0 y
B, = 9?A — 'A% =2q0(ct — 2| — - =0
z 90! )Ly(xz+y2] 8X(x2+y2ﬂ



which also agrees with the fields specified in part a).

11.23

In a collision process a particle of mass m,, at rest in the laboratory, is struck by a

particle of mass m , momentum p . and total energy E ,. . In the collision the two

initial particles are transformed into two others of mass m, and m,. The

configurations of the momentum vectors in the center of momentum (cm) frame
(traditionally called the center-of-mass frame) and the laboratory frame are shown in
the figure.

(a) Use invariant scalar products to show that the total energy W in the cm frame
- H 2 2 2
has its square given by W"=m '+m +2mE . and that the cms

3-momentum p’ is,

p = M, Pas _

W

(b) Show that the Lorentz transformation parameters 3, and y_ describing

the velocity of the cm frame in the laboratory are

ﬂcm = pLAB ym

_ _m+ Eve
1/ ¢ J
m, +E

W

(c) Show that the results of parts a and b reduce in the nonrelativistic limit to the
familiar expressions,

2

m
W =m +m,+ 2 | Pue
m+m, ) 2m,

. m _ — P
p z( 2 ]pLABvﬂcsz

m +m,

Sol:



(@)

Let P and P’ be 4-vectors in lab and CM frame respectively, then we have
P, = (E, Pug) P, = (M,,0); P = (E;, p'), P, = (E;,—P')
From the energy and momentum conservation in the lab frame, we have
P+R=R+P
The total center-of-mass energy W:
W? = (El' + Eéj: (El' + Ez’j—(pl’ + p;j=(Pl’ + Pz'j
Now note (P/+P,)? is Lorentz invariant, we have

W?=(P/+P))?=(P+P) =P+ P +2P-P,=m’ + m’ + 2m,E,

Tofind p’, we consider (P,-P)* and (P’ -P))*:

(F-P)" = (m,E)" = m;(p; +m) = m,p; +m/m,

(R P) = (BB, +p*)" = BB + 2E[E;p” + p*
=(p?+m’)(p?+m’)+2EE, p* + p”*

=2p* +(m2+m2)p’? + 2E/E; p'* + m’m?

= p?(2p"”* + m? + m’ + 2E/E}) + m’m’

_ 12 12 ncr 12 20n2 At 2 2,n2
= p'?(E/% 2E/E; + E)%) + mim2 = p"W? + m’m;

From Lorentz invariance, we have

' ’ m
(P-RP)*=(P 'P2)2:>m§p12=p'2W2:>p'=W2p1

Since p, and p’are in the same direction (the Lorentz boost is along



m
therefore we have p’'= WZ p,.

(b)

We can also obtain p’ from Lorentz transformation of p, (and —p’'from p,)

p’ = 7cm(p1 _ﬂcmE1);(_ p’) = ycm(_ﬂcmmz)

Thus,
'ch = pl :>ch = pl
m2+El m2+E1
3 1 3 m, + E B m, + E, _m2+E1
Ven = 1_2_ Ez_z_ 22E Ez_z_ Wi
ﬂcm (m2+ 1) pl m2+ m2 1+ 1 p1
(©
p2
In the non-relativistic limit, E,~m + —1
2m1
Therefore,
W? = m?+m? +2m_ (m, + plz)—(m +m)2+mz 2= ( +m)2_1+ m__ P
~m, 2 LMy 2m1_ 1 2 mlpl_ml 2 I (m1+m2)2m1
m 2 m 2] m 2
W =(m +m,) 1+—22&z(m1+m2) 14 —2— Zi =m, +m, +—2 P
(m1+m2) m, (ml+m2) 2ml_ m, +m, 2m
Similarly,
m m
_.,__2__ ~ 2 —
P W Py m, +m, Py
B pl - pl

m2+E1 m, +m,

These are the familiar Galilean relativity results.

11.30



An isotropic linear material medium, characterized by the constitutive relations (in its

rest frame K'), D'=¢E’ and 1H' =B’ is in uniform translation with velocity V

in the inertial frame K. By exploiting the fact that F, = (E, B) and G, = (D, I:|)

transform as second rank 4-tensors under Lorentz transformations, show that the

macroscopic fields D and H aregivenintermsof E and B by

D:5E+72(5—£j[ﬂzﬁl+ﬁx B]
U

H :13+y2{5—1J[—ﬂ2BL+ﬂx E]
7 M

where E, and EL are components perpendicularto V.

Sol:

Since F,, transforms as a rank-2 tensor, we have seen that the components E

and B transform according to

- —_ 2 —_f = —_

= y(E+BxB)- 7+1/3(ﬂ-E)
2

8'= (B~ xE)-—L—p(5-8)
y+1

For this problem, it is actually convenient to rewrite these expressions in terms of the
perpendicular and parallel field components

E'=y(E, + BxB)-4(5-E)
8'=/(8, - pxE)- A(3-8)
where E, =E —ﬁ’(ﬁ E): —ﬁA’x(A X E) and similarly for B, . Since these are the

relativistic transformations of the components of a rand-2 tensor, any other rank-2

tensor must transform similarly. In particular, since D and H are components of

the G, tensor, they also transform as

D'=(D. + AxH)-lj-

+ fix
A=, - pxD)- Al

The inverse transformation may be obtained by taking ﬁA’ - —,3

Dl
Ul

h) %)
h) %)
Il



D= 7/(5 + BxH ‘) Bl3-o)
A=A, -pxD)-4(3-A)
Using the constitutive relations D'=¢E’' and uH'=B' gives

D:y(£;+5 iéj Alp-£)
7

- fpesa o2

From the result we have
E'=y(E, +3x8B)- 53 E)
8'=y(8, - p=E)- (3 8)

We split it into parallel and perpendicular field components

M

m

As a result, we easily see that
[ E’:}/(,BXE—IBZXQL)
BxB =y(BxB+ A «E,)

Therefore, we can obtain

Y7,
=

b=c[E, + A3 E||+ 72[8—%](,82><EL+ fxB)
H:%[EDLB(A é)_yz[g_%](ﬂzxa_ﬁxé)






