14.1

Verify by explicit calculation that the Lienard-Wiechert expressions for all

components of E and B for a particle moving with constant velocity agree with
the ones obtained in the text by means of a Lorentz transformation. Follow the
general method at the end of Section 14.1.

Sol:
From Jackson (14.13) and (14.14),
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14.4 Using the Lienard-Wiechert fields, discuss the time-averaged power
radiated per unit solid angle in nonrelativistic motion of a particle with charge e,
moving

(a) along the z axis with instantaneous position z(t) = acosa,t,
(b) in a circle of radius R in the x-y plane with constant angular frequency o, .

Sketch the angular distribution of the radiation and determine the total power
radiated in each case.

Sol:
(a)
In the non-relativisitic limit, the radiated power is given by
dP(t) e* |, 3
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In the case of harmonic motion along the z axis, we take
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By symmetry, we assume the observer is in the x-z plane tilted with angle &
from the vertical. In other words, we take

N=Xsin@+Zcosé

This provides enough information to simply substitute into the power
expression (1)
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Taking a time average (Cos’ wt — 1/ 2) gives
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This is a familiar dipole power distribution, which looks like
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(Note: the positive horizontal axis is #=0, and the figure is plotted in the unit of
2,2 4
e’a’w,
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Integrating over angles gives the total power
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(b)

Here we take instead

F =R(Xcosm,t + ysin mt)

= RCUO A . ~ - R(()OZ " .
- f= (=Xsin oyt + ycosat), =~ (Xcos w,t + ysin ayt)
Then
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Taking a time average gives



This distribution looks like
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The total power is given by integration over angles. The resultis P = 3
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14.5

A nonrelativistic particle of charge ze, mass m, and kinetic energy E makes a
head-on collision with a fixed central force field of finite range. The interaction is
repulsive and described by a potential V(r), which becomes greater than E at

close distances.

(a) Show that the total energy radiated is given by

v [* dr
w-5\3 14 e

where I,
(b) If the interaction is a Coulomb potential V (r)= zZe?/r, show that the total
energy radiated is
_ 8 mv;
45 c°
where V; is the velocity of the charge at infinity.

is the closest distance of approach in the collision.

Sol:

(a) Inthe non-relativistic limit, we may use Lamour’s formula written in terms of b



(b)

3m%c®|dt| 3m?c3 dr
where we have used Newton’s second law to write

d_pzlf__fdv(r)

dt dr
The radiated energy is given by integrating power over time

AW =" P(t)dt

However, this can be converted to an integral over the trajectory of the particle.
By symmetry, we double the value of the integral from closest approach to
infinity

AW = zj
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The velocity dr/dt can be obtained from energy conservation. For a head-on
collision, we gave simply

dr  [2(E-V(r))
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Since the velocity (and hence kinetic energy) vanishes at closest approach, the
total energy E is the same as the potential energy at closest approach,
E V( Usmg this finally gives
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Substituting

2
V(r)= ZZ_e dV ZZe into the result of part (a) gives
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We may relate I, to the velocity Vv, at infinity using energy conservation
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14.9 A particle of mass m, charge g, moves in a plane perpendicular to a uniform,
static, magnetic induction B.

(a) Calculate the total energy radiated per unit time, expressing it in terms of the
constants already defined and the ratio y of the particle's total energy to its rest

energy.
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(b) If at time t = 0 the particle has a total energy E, =y mc”, show that it will
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have energy E = ymc® < E; ata time t, where
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provided y >1.

(c) If the particle is initially nonrelativistic and has a Kinetic energy T at t = 0,
what is its kinetic energy at time t ?

(d) If the particle is actually trapped in the magnetic dipole field of the earth and
is spiraling back and forth along a line of force, does it radiate more energy while
near the equator, or while near its turning points? Why? Make quantitative
statements if you can.

Sol:

(a)
From Eq. (14.24) and (14.25), radiated power is
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From the Lorentz force law ‘d—f‘ = ‘ F‘ =
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Also e 0 because B field does no work (neglecting radiation reaction).

p==2 B?) = —1) since y° = = =y -1.
3m 7°(a°p°B%) = (7 ) 7’ ey yB =y
(b)
At time t=0, particle has total energy E, = yomcz; at time t, it has total energy
E=ymc’<E,.
dE 2q'B° ,
For y>1, P=——=— from part (a
Y T y part (a).
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Integrate both sides from t=0 to t. Recall y(t=0)=y,
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(c)

In the non-relativistic situation,
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Integrating over t, we get T = ¢, expk—g s tJ .

(d)

It radiates more energy while near its turning points. You can see problem 12.9
for further information.



