Chapter 1 Vector Analysis
1.1 Vector Algebra: 1.1.1 Vector Operations (I)

Vectors: Quantities have both magnitude and direction,
denoted by boldface (A, B, and so on).

Scalars: Quantities have magnitude but no direction denoted
by ordinary type.

In diagrams, vectors are denoted by arrows: the length of
the arrow is proportional to the magnitude of the vector,
and the arrowhead indicates its direction.

Minus A (-A) is a vector with the same magnitude as A but
of opposite direction.

Vectors have magnitude and direction but not location.

1.1.1 Vector Operations (I1)

(i) Addition of two vectors:
Place the tail of B at the head of A.
Commutative: A+B=B+A
Associative: (A+B)+C=A+(B+C)
A-B=A+(-B)

B -B

B+A
Al a+B A A-B A

1.1.1 Vector Operations (1)

(if) Multiplication by a scalar:
Multiplies the magnitude but leaves the direction unchanged.
Distributive: A(A+B)=AA+ dB

(iii) Dot product of two vector (scalar product):
The dot product of two vectors is defined by A-B= AB cosé,

where @is the angle they form when placed tail-to-tail.
Commutative: A-B=B-A

A
Distributive: A-(B+C)=A-B+A.C

1.1.1 Vector Operations (1V)
(iv) Cross product of two vector (vector product):
The cross product of two vectors is defined by

AxB= AB sing N . where Nis a unit vector pointing
perpendicular to the plane of A and B.

A hat is used to designate the unit vector and its direction is
determined by the right-hand rule.

Distributive: Ax(B+C)=AxB+AxC A

not commutative: AxB=-BxA




1.1.2 Vector Algebra: Component form (1)

Let X,y andZ be unit vectors parallel to the x, y, and z
axes, respectively. An arbitrary vector A can be expressed in

terms of these basis vectors.
A=AX+Ay+AZ

The numbers A,, Ay, and A, are called components.

1.1.2 Vector Algebra: Component form (I1)

Reformulate the four vector operations as a rule for
manipulating components:

(i) To add vectors, add like components.
A+B=(AX+Ay+A2)+(BX+By+B,2)
= (A +B)X+(A +B,)y+(A +B,)z
(i) To multiply by a scalar, multiply each component.
aA =a(AX+AYy+A2)
=aAX+aAy+aAz

1.1.2 Vector Algebra: Component form (l11)

(iif) To calculate the dot product, multiply like components,
and add.

A-B=(AX+AYy+A2)-(BX+By+B,2)
=AB,+AB,+AB,

(iv) To calculate the cross product, form the determinant
whose first row is X, Y and z , whose second row is A
(in component form), and whose third row is B.

Xy z| (AB,-AB,)X
AxB=|A A A|=+(AB,-AB,Y
B, B, B| +(AB,~AB,)z

X

1.1.3 Triple Products (I)

Since the cross product of two vectors is itself a vector, it
can be dotted or crossed with a third vector to form a

triple product.

(i) Scalar triple product: A:(BxC). Geometrically,
|A-(BxC)| is the volume of a parallelepiped generated by
these three vectors as shown below.

A-(BxC)=B-(CxA)=C-(AxB) P 7

In component form A AX/ A ale/ 2 -
C /
A-(BxC)=|B, B, B, B
C, C, C,




1.1.3 Triple Products (Il)

(ii) Vector triple product: Ax(BxC). The vector triple
product can be simplified by the so-called BAC-CAB

e Ax(BxC)=B(A-C)-C(A-B)
Notice that (AxB)xC # Ax(BxC)
(AxB)xC=-Cx(AxB)=—-A(B-C)+B(A-C)

Problem 1.6 Under what conditions does
(AxB)xC=Ax(BxC)?
Ans: Either A is parallel to C,
or B is perpendicular to A and C o

1.1.4 Position, Displacement, and Separation
Vectors (I)

Position vector: The vector to that point from the origin.
r=Xx+yy+2zz

Its magnitude (the distance from the origin)
r=rr=x+y?+72°

Its direction unit vector (pointing radially outward)
~ T XX+VYYy+7Zz
rFr=—=
r \/ X+ Y+ 2°
The infinitesimal displacement vector, from (X, y, z)
to (x+dx, y+dy, z+dz), is

dl = dxx + dyy + dzz
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1.1.4 Position, Displacement, and Separation
Vectors (Il)

In electrodynamics one frequently encounters problems
involving two points:

A source point, r’, where an electric field is located
A field point, r, at which you are calculating the electric field

source point

A short-hand notation for the
separation vector from the source

point to the field point is \
field point

r =r—r', magnituder =|r—r|

. ) . i . . r r-r
unit vector in thedirection formr'toris f :—:‘—,
r r—r
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1.2 Differential Calculus
1.2.1 “Ordinary” Derivatives
f

Suppose we have a function of
one variable, f(x). What does the
derivative, df/dx, do for us?

(a) *

Ans: It tells us how rapidly the function f(x) varies when we
change the argument x by a tiny amount, dx.

df = (ijdx
dx

In words, if we change x by an amount dx, then, f changes
by an amount df.

The derivative df/dx is the slope of the graph of f versus X




1.2.2 Gradient (1)

Suppose we have a function of three A mountain hill
variables. What does the derivative H(x,Y,2)
mean in this case?
A theorem on partial derivatives states that
dH = oH dx+aH dy+aH dz

OX oy 0z
_ M My @&+ dyy + dz)

OX 0z

=(VH)-(dI)

The gradient of H is a vector quantity, with three components.

yp=Hg Ho Hs
OX oy 0z 13

1.2.2 Gradient (I1)

Geometrical interpretation: Like any vector, the gradient
has magnitude and direction.

A dot product in abstract form is: dH = VH -dl =|VH |dl| cos®
whered istheangle between VH and dl.

The gradient VH points in the direction of maximum
increase of the function H.

Analogous to the derivative of one variable, a vanishing
derivative signals a maximum, a minimum, or an inflection.
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Example 1.3 & Problem 1.13

Example 1.3 Find the gradient of I = \/X2 + y2 +7°

o . oOr. or. XX+yW+2Z r .
Ans: VI =—Xx+—y+—1z= Yy =—=r

OX ay 0z ‘[X2_|_y2_|_22 r

Problem 1.13 Let F=(X=X)X+(y-Y)y+(z—2)z
Show that

@Vri=?  vrz=vi(x-x)"+(y-y)*+(z-2)’]
=2(Xx—-X)Xx+2(y-y)y+2(z-2)z=2r

vy =V VX=X (y- )+ (2-2)°
OV = = o vy 7Y

N A A f
=—%[2(X—X)X+2(Y—Y)y+2(Z—Z)Z]/r3=—715

1.2.3 The Operator V (1)

The gradient has the formal appearance of a vector, V,
“multiplying”, a scalar H.

~0 ~0 A0
VH=(X—+y—+z—)H
(Xax y Zaz)

oy
' “~~del
V is a vector operator that acts upon H, not a vector that
multiplies H. o o 2
V=xX—+y—+2—
ox ~oy o0z

V mimics the behavior of an ordinary vector in virtually
every way, if we translate “multiply” by “act upon”.

It is a marvelous piece of notational simplification.

16




1.2.3 The Operator V (lI)

An ordinary vector A can be multiply in three ways:
1. Multiply a scalar a: aA
2. Multiply another vector (dot product): A-B

3. Multiply another vector (cross product): AxB

Correspondingly, there are three ways the operator V can act:
1. On a scalar function H: VH (Gradient )

2. On a vector function (dot product): V-v (divergence )

1.2.4 The Divergence

Divergence of a vector v iS'
0 .0
V.v=(x—+ —+z— VX+VY+V,Z
(x x Yoy i )-( ,Y +V,2)
aVx aVy aVz
=—X4+ 24
oxXx oy oz
Vv is a measure of how much the vector v spread out
from the point in question.

N
I

w4t -
3. On a vector function (cross product): Vxv (curl ) ’I‘ ‘ ‘ l ' ’ ’ ' ' l ’ '
f
17 @ positive ® ZEero © positive 18
Example 1.4 1.2.5 The Curl
\I/ [M“HH HHH[ Curl of a vector v is:
A L Xy oz
/l\« ‘["‘ H!HH 0 o©6 0ol ..ov 8Vy _OV. ov A@Vy ov
Vxv=ls o =) §(E - ) ()
X oy 0z oy 0z 0z OX oxX oy
Example 1.4 Suppose the functlons in above three figures V. V.V

are v, =XX+Vyy+2z, v,=12, v, = Zz Calculate their
dlvergences

oX oy oz

Ans: V.v,=—+—"+—=3
oXx oy oz

V., = 80+80+81 0.
oX oy o0z

V-v 80+80+az 1.

c

oX oy o0z
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X

Vxv is a measure of how much the vector v curl around
the point in question.

p M~ - — Y =
— 17 - o | e e e e -
‘//’;‘4 ot/ / O P y
TEERS s
* @ Ve E— )
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Example 1.5

Example 1.5 Suppose the functions in above two figures
are v,=—-yx+Xy, v, =Xy Calculate their curls.

Ans: vaa:)}(@_%)_,_s‘,(ﬂ_@ +2(%_8(—y)):22
oy 0z 0z oOX ox oy

Vv, =1(2-29) 4 529 5 XDy _;
oy oz 0z OX oX oy
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1.2.6 Product Rules (I)

The sum rule:
d df dg
—(f+g)=—+— V(f+g)=Vf+V
OI( g) o o (f+9) g

V. (A+B)=V-A+V-B Vx(A+B)=VxA+VxB

The rule for multiplying by a constant:

i(kf)=ki V(kf) =kvf
dx dx
V-(kA)=kV-A Vx(kA) =kV x A

22

1.2.6 Product Rules (Il)

scalar: fg

The product rule:
vector : fA

i(fg):gi+fd—g V(fg)=gVf + fVg

dx dx dx

V- (fA)=Vf.-A+f(V-A) Vx(fA)=Vf xA+ f(VxA)
scalar:A-B
vector: AxB

V(A B)=Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A~__

R AL Chaps.
V-(AxB)=B-(VxA)-A-(VxB) 3 and 10

Vx(AxB)=(B-V)A—(A-V)B+A(V-B)-B(V-A)
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1.2.6 Product Rules (lll)

The quotient rule:

df fdg {scalar:i vector:é
d(i):gdx_ dx g g
dx g 9
f Vi -V
g g
A V-A)-A-V
V_(_):g( )2 g
g g
A, 9g(VxA)-(VgxA) g(VxA)+AxVg
Vx(—)= 2 = 2
g g g 2




1.2.7 Second Derivatives (1)

By applying V twice, we can construct five species of
second derivatives.

Threefirst derivatives VT, V-v, Vxv
(1) Divergenceof gradient:V-(VT)  «— very important

(2) Curl of gradient:V x(VT) «—— always zero

(3) Gradient of divergence:V(V -v) Chaps. 8 and 10
(4) Divergenceof curl : V- (Vxv) «—— always zero

(5) Curl of curl :Vx(Vxv) ~—— reduce to others
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1.2.7 Second Derivatives (Il)

Ov- (v =GL452L4+2 9.6 459,597
ox "oy oz OX oy 0z

2 2 2
8'£+6'£+8'IZ' the Laplacian of T
ox: oy oz
The Laplacian of a vector is similar:

=V°T

(V-V)v=V2QRv, +JV, +2V,) =XV, + V2V, +2V?,

(QVx(VT)=(VxV)T
The proof hinges on the equality of cross derivatives:

Vx (T = G245+ 0@ T 594297 o
ox "oy oz oX oy 0z

o 0T, o ,0T, o 0T, o T, 0 0T, 0 0T
&(a_y)_a_y(&)’ a_y(E)_E(a_y)’ 725 "%

1.2.7 Second Derivatives (I11)
N Moy 50 N
a2 o) T M )
0 ,0v, OV 0 ,0v, oV 0 oV
= CE ) (e ()
X 0y 0z 0y 0z OX 0z OX
=0 <«— always zero

0
(4)V-(va)=i§(i(?—;—%»+9%@(

oV,
o )

(5) Vx(Vxv) Can we use the following vector identity?
Cx(AxB)=A(B-C)-B(A-C)

ov, OV .0V, oV
D) py(=X-—=2

aVX
oy oz 0z ox )

Qo
+Z& ay

~0 A0 A0, /A
Vx(va)—(x&nLyaJrzE)x(x(

=...=V(V-v)-V?

We will encounter this derivative when dealing with

the vector potential (magnetism).
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1.3 Integral Calculus
1.3.1 Line, Surface, and Volume ()
In electrodynamics, the line (or path) integrals, surface

integrals (or flux), and volume integrals are the most
important integrals.

(a) Line integrals: a line integral is an expression of the
form b
v-dl,

aP

Where v is a vector function, dl is the infinitesimal
displacement vector, and the integral is to be carried out
along a prescribed path P from point a to point b.

Put a circle on the integral, in the path in question
forms a closed loop.
§V -dl

28




1.3.1 Line, Surface, and Volume (ll)

The value of a line integral depends critically on the
particular path taken from a to b, but there is an important
special class of vector functions for which the line integral
is independent of the path, and is determined entirely

by the end points, e.qg. b
Y P 9 W=["F-dl

A force that has this property is called conservative.

29

Figure 1.20

Figure 1.21

Example 1.6 Calculate the line integral of the function

v =y’X+2X(y+1)y, from the point a=(1,1,0) to the point
b=(2,2,0), along the paths (1) and (2) in Fig.1.21. What is
the loop integral that goes from a to b along (1) and
returns to a along (2)?

b
The strategy here is to get everything in

@,
o |(i)
terms of one variable. 1 5=

i 2 X
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1.3.1 Line, Surface, and Volume (lII)

(b) Surface integrals: a line integral is an expression of
the form

Z

Lv-da,

where v is a vector function, and da is
the infinitesimal patch of area, with
direction perpendicular to the surface.

The value of a surface integral depends on the particular
surface chosen, but there is a special class of vector
functions for which it is independent of the surface, and is
determined entirely by the boundary.

31

e y

Example 1.7 Calculate the surface integral of the function

v=2XZ&X+(2+X)y + Y(Z° -3z over five sides of the
cubical box. Let "upward and outward” be the positive
direction, as indicated by the arrow.

(S

7

I

Sol : Taking thesidesoneat atime: & o TG

¥

if)

(iii)

2

(1) x=2, da = dydz,
jv -da=4 _[02 dyjo2 zdz=16

v-da =2xzdydz=4zdydz -

(5) z=2, da=dxdyz, v-da= y(z>—3)dxdy = ydxdy
2 2
J'v-da=J‘0 dxj0 ydy =4

32

¥




1.3.1 Line, Surface, and Volume (1V)

(c) Volume integrals: a line integral is an expression of

the form
j Tdz,
\'

where T is a scalar function, and dzis an infinitesimal
volume element. In Cartesian coordinates, dz=dxdydz

For example, if T is a density of a substance, then the
volume integral would give the total mass.

The volume integrals of vector functions:
Ivdr = I(vxi +V,y +V,z)dr

= ﬁjvxdr+§7jvydr+ijvzdr

33

Example 1.8 Calculate the volume integral of the function
T = xyZ® over the prism in Fig. 1.24.

Sol : Let'sdo zfirst (0to 3); theny fromO0tol- x;
finaly xfromOtol.

_[ ” xyz*dxdydz = Jj zzdz{[; x(J.Ol_X ydy) dx}

_ 9{ Ex(% (1- x)z)dx}

1 3
21278

=9
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1.3.2 The Fundamental Theorem of Calculus

Fundamental theorem of calculus:

b df b
L o o j df = f(b)— f(a)
Geometrical Interpretation: two ways to determine the total
change in the function:

1. go step-by-step adding up all the tiny increments as you go
2. subtract the values at the ends.

The integral of a derivative over an interval is given by the

value of the function at the end points (boundary). a5

1.3.3 The Fundamental Theorem for Gradients

A scalar function of three variables T(X, y, z) changes by

a small amount.
dT =(VT)-dl,

The total change in T in going from a to b alonag the path
selected is:

[[(vT)-di=T(b)-T(a)

Fundamental theorem for gradient. ~

Geometrical Interpretation: Measure the high of a skyscraper.
1. Measure the high of each floor and add them all up.
2. Place an altimeter at the top and the bottom, subtract the

readings at the ends. .




1.3.3 The Fundamental Theorem for Gradients (ll)

_[b (VT)-di=T(b)-T(a) the right side of this equation makes
no reference to the path---only to the end points.

Thus gradients have special property that their line integrals
are path independent.

Corollary 1: _Lb(VT)-dl is independent of path taken from
atob.

Corollary 2: ff(VT)-dl =0, since the beginning and end
points are identical, and hence T(b)-T(a)=0.

A conservative force may be associated with a scalar
potential energy function, whereas a non-conservative

force cannot.
37

Potential Energy and Conservative Forces

Potential energy defined in terms of work done by the
associated conservative force.

B
Ug-U,=—[ F.-ds
*Conservative forces tend to minimize the potential

energy within any system: It allowed to, an apple falls
to the ground and a spring returns to its natural length.

Non-conservative force does not imply it is dissipative,
for example, magnetic force, and also does not mean it
will decrease the potential energy, such as hand force.

38

Distinction Between
Conservative and Non-conservative Forces

The distinction between conservative and non-
conservative forces is best stated as follows:

A conservative force may be associated with a scalar
potential energy function, whereas a non-conservative
force cannot.

B
Ug-U,=—| F.-ds

F.=-VU

c
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Conservative Force and
Potential Energy Function

How can we find a conservative force if the associated
potential energy function is given?

A conservative force can be derived from a scalar
potential energy function.

F, =-VU

The negative sign indicates that the force points in the
direction of decreasing potential energy.

. dUg
Gravity U = mgy; F, =~ Y =-mg
du
Spring Uspzékxz; F=- dxsp = —kx

40




1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:
j (v-v)dr=§v-da

S

The integration of a derivative (in this case the divergence)
over a region (in this case a volume) is equal to the value of

the function at the boundary (in this case the surface that
bounds the volume)

This theorem has at least three special names: Gauss’s

theorem, Green’s theorem, or the divergence theorem.

Geometrical Interpretation: Measure the total amount of
fluid passing out through the surface, per unit time.

1. Count up all the faucets, recording how much each put out.
2. Go around the boundary, measuring the flow at each point,
and add it all up.
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Supplementary

Gauss’s divergence theorem
(Transformation between volume integrals and surface integrals)

jv(v-v)dfzgﬁv-ﬁda

S
Rough V=VyX+Vyy+V,Z and n=cosax +Cospy +CoSyz
proof: "
where «, S, and y are the angles between n and x-, y -

and z- axis, respectively.

J, (v -vyde = [[f G+ aa\’;’ + 22y
\

= j J‘ (Vydydz + vy dzdx + v, dxdy)
S

= ” (Vy COsa +Vy, €os 3 +V, cosy)da

Rigorous proof can be found in: Erwin Kreyszig, Advanced

York, 1993), 7th ed. Chap. 9, pp. 546-547. 42

S
— ‘U V- nda Engineering Mathematics (John Wiley and Sons, New
S

Example 1.10 Check the divergence theorem using the
function v = y*x+ (2xy+ 2°)y + (2y2)z
and the unit cube situated at the origin.

24, T(V) A
Sol:InthiscaseV - v =2(x+Y) i
IVZ(x+ Y) dXdde =2J.01 dZI:J;(X+ y)dxdy ™ 1 @ 1 (i) y
1 el 1 x '
=2jofo(%+y)dyzzj'o(%+ y)dy =2 l(w)
Figure 1.29

IVV -vdr =2

To evaluate the surface integral we must consider
separately the six sides of the cube. The total flux is...
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1.3.5 The Fundamental Theorem for Curls (1)

The fundamental theorem for curls---Stokes’ theorem---
states that:
J-S(va)-dazfv-dl

b
The integration of a derivative (here, the curl) over a region
(here, a patch of surface) is equal to the value of the
function at the boundary (in this case the perimeter of the
patch).

Geometrical Interpretation:
Measure the “twist” of the

vectors v; a region of high

curl is a whirlpool.
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1.3.5 The Fundamental Theorem for Curls (Il)

Ambiguity in Stokes’ theorem: Concerning the boundary
line integral, which way are we supposed to go around
(clockwise or counterclockwise)? The right-hand rule.

Corollary 1: J‘(VXV)‘O'a depends only on the boundary
lines, not on the particular surface used.

Corollary 2: §(va)-da =0 for any closed surface, since
the boundary line shrinks down to a point.
' da

These corollaries are analogous to
those for the gradient theorem. Q\ >

dl
45

Supplementary

Stokes’ theorem
(Transformation between surface integrals and line integrals)

js(wv)-dazjév-dl

P

Rigorous proof can be found in:

Erwin Kreyszig, Advanced Engineering Mathematics
(John Wiley and Sons, New York, 1993),

7th ed. Chap. 9, pp. 556-559.
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Comments: graduate level (reference only)
* Green'’s theorems:
Letv=fVg = V.v=V.(fVg)= fV2g+Vf- Vg
v-n=f(n-VgQ)

Green'sfirst formula: IV (fV2g +Vf-vg)dr = qS f %da
S

Green's second formula: fv (1v2g-gv2f)de =(f %_ gg—;)da
s

» Green’s theorem in the plane as a special case of
Stokes’ theorem
Let v be avector function in the xy-plane.

oV OVy
= jsj (a—;’ —a—y)da - gs(vxdx+ vy dy)

47

oV
(va).ﬁ:_y_%
ox oy

Example 1.11 Suppose v = (2xz+3y*)y + (4yz°)z
Check Stokes’ theorem for the square surface shown below.

Tr i)

Sol :Vxv=(42" -2X)X +27z; da=dydzx 1
i,z 4 635, SRR Y 0
I(va).da—jojo4z dydz_3 L
Thelineintegral of thefour segments M 1oy
@ x=0, z=0, v-dl=3y2dy, fv-dl:f013y2dy=l,
() x=0 y=1 v-dl=dz2dz, [v-di=fj4ldz=1%,
iy x=0, z=1, v-di=3y2dy, [v.dl=[3y2dy=—1,

Gv) x=0, y=0, v.dl=0, fv-dl=fl0dz=0.

%v-dl=1+§—1+0=%. 48




1.3.6 Integration by Parts

d aof dg
—(f)=g—+ f =2
dx( 9=9 dx i dx
Integrating both sidesand

invoking the fundamental theorem

L eft j:%(fg)dx: fg°

V-(fA)=Vf-A+ f(V-A)
Integrateit over a volumeand
inviking the divergence theorem.

Left [V-(fA)dr =f(fA)-da
RightJ-(Vf A+ f(V-A))dr

Right j: f %dwrj:g%dx =_[(Vf -A)dr +J.f(V~A)dr

_ fg|2+j:g%dx—j:g%dx :j(Vf -A)dr+§(fA)-da—j(Vf -A)dr

i =§(fA)-da /
= fg,

not a rigorous prove
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Homework #1

Problems: 1.5, 1.7, 1.13, 1.16, 1.32,
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1.4 Curvilinear Coordinates
1.4.1 Spherical Polar Coordinates (l)

The spherical (polar) coordinates (r, 6, ¢) of a point P are
defined below;

r: the distance from the origin (the magnitude of the
position vector).
¢ the angle down from the z-axis (called polar angle).

¢. The angle around from the x-axis (call the azimuthal
angle). z

X=Trsinfcosg . {j’f
. . e -
y=rsinédsing L1 Ny

Z=1r Cos{d

Murray R Spiegel, Vector Analysis
(McFRAW-HIll, New York, 1989), 6th ed. Chap. 7. 52
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1.4.1 Spherical Polar Coordinates (Il)

The direction of the coordinates: the unit vector I, &, ¢

They constitute an orthogonal (mutually perpendicular)
basis set (just like X, Yy, Z).

So any vector A can be expressed in terms of them:

A=Ar+Ab0+Ap .

In termsof Cartesian unit vector AL
& f

— sinfcos¢pX +sinfsing§ + cosZ, ] 7

= cosfOcos¢X+cosdsingy —sinf z, E/K/i “““

= —singX+cosgy¥
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1.4.1 Spherical Polar Coordinates (l1)

Warning: r, 0, ¢ are associated with particular point P,
and they change direction as P moves around.

For example, r always points radially outward, but “radially
outward” can be the x direction, the y direction, or any other
direction, depending on where you are.

Notice: Since the unit vectors are function of position, we
must handle the differential and integral with care.

1. Differentiate a vector that is expressed in spherical
coordinates.

2. Do not take the unit vectors outside an integral.
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1.4.1 Spherical Polar Coordinates (1V)

@ rsind do

r r do "] 2
2 a9
rsinf

(@) (h) ()

The general infinitesimal displacement :

dl =drt +rd@+rsindgp

Theinfinitesimal surface e ement da for the surface
of asphere.

da = (dl,)(dl,)r= r’sinadddg r

Theinfinitessmal volumeelement dz

dz = (dl )(dl,)(dl,) = r’sinddrdddg
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1.4.1 Spherical Polar Coordinates (V)

The vector derivatives in spherical coordinates:
Gradient:

oT, 10T5 1 T,
VI =t 256" T Teno ae

Divergence:

I 8 (sinBvg) + e
—(sin " .
rsiné 39 ¢ rsiné og¢

rsiné a¢ r|sine 3¢ o
] 8 Bvr ~
+ ;[5;(7’1)8)—89]‘!’-

Laplacian:

14 aT 1 8. ar) 1 89T
T o —(r— - |sinfl—= |t =75
VT riar (r Br) t Teing 90 ( a8 r2sin® 6 82

3 | 1 v B ”
Vxv = ! [%(sin9v¢)4ﬂ]r+ Ii——-—r*—(rvqg)]ﬂ
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1.4.2 Cylindrical Coordinates ()

The cylindrical coordinates (s, ¢, z) of a point P are defined
below: X=SC0S¢, y=SSng, z=2z2

S: the distance from the z axis.

¢. the same meaning as in spherical coordinates.

z the same as Cartesian.

The unit vectors are ,
= Ccos¢pX+sing¥y, z § i k&l
—singX +coso ¥, =TT 3

Z — —
A T Y
X

Theinfinitesimal displacement :
dl = dss + sd¢ + dzz Figure 1.42

N>Ry, W

Tl
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1.4.2 Cylindrical Coordinates (I1)

The vector derivatives in cylindrical coordinates:

Gradient:

Divergence:
13 1 ovy = dug
V.v=——(su, — 4+ —
V=R T I TS
Curl:
1dv, dvg ). duy;  du;y . 1] 0 dus | .
v = [--=_=2 R 1 = -
v (s ¢ az) (Bz gs ¢+s J (svg) ¢ z
Laplacian:

_1a /8Ty 18T 3T
52 3¢2 322 ' 58

1.5 The Dirac Delta Function
1.5.1 The Divergence of r/r?

Consider a vector function v =r/r? . 4 p

The divergence of this vector function is: ‘_‘_‘BT/
10, 10 <IN
r%or rz) rzar() d } h

The surface integral of this function is:
. T 27 l 2 .
§v-da_jo jo (5 r?sing)dedg
T . 2
=j0 sn@dejo d¢=47z¢jv (V-v)dr

The divergence theorem is false?
No = The Dirac delta function

59

1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as
an infinitely high, infinitesimally narrow “spike”, with area just 1.

0 if x=0 .
5(x):{ !Xio with [ 5(xdx=1

o If X=

Technically, 5(x) is not a function at all, since its value is
not finite at x=0. Such function is called the generalized
function, or distribution.

r Ryx)

rea | %)

x -4 s e x -1 -122 12 1 x 60
(a) (b

1.5.2 The One-Dimensional Dirac Delta Function (I1)

If f(x) is some “ordinary” function (let's say that it is
continuous), then the product f(x)o(X) is zero everywhere
except at x=0. It follows that f(xX)3(x)=f(0)d(x). In particular,

[ ;°° f()5(x)dx= T (0) ;°° S(x)dx = f (0)

We can shift the spike from x=0 to some other point x=a.

0 if .
§(x—a)={ T with [ s(x-a)dx=1

o If x=a

A generalized integration equation:

[ f(o(x-a)dx=f ()| s(xdx=f(a)
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1.5.2 The One-Dimensional Dirac Delta Function (lII)
Although 5(X) is not a legitimate function, integrals over d(x)
are perfectly acceptable.

It is best to think of the delta function as something that is
always intended for use under an integral sign.

In particular, two expressions involving delta function are
considered equal if:

[ £ 0D, (k= [ £ (D, (x)clx

for all ("ordinary") function of f (x).

Example 1.14 Evaluate the integral (a)j X*S(x— 2)dx
(b) j X35 (x— 4)dx
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1
Example 1.15 Show that ~ d(kx) = — &(X)
where Kk is any (nonzero) constant. ‘ ‘

Sol : Consider theintegral for an arbitrary test function f (x),
f f (x)5 (kx)dx
Let y=kx, sothat x=y/k,dx=1/kdy

K= positive: theintegration runsfrom - o to «
| negative: theintegration runsfromoo to - o

f; f(x)o(kqdx = i% j‘” f(y/k)5(y)dy=ﬁ f (0)

L s(x) and (=x) = 5(x).

K

S0 6 (kx) servesthe same purpose as
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Prob. 1.45

@ xdiw(x» - 5(%)
X

(b) Let 8(x) bethestepfunction:

0(x) = L if x>0
o, if x<0

Show that dg/dx = 5(x)
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1.5.3 The three-Dimensional Dirac Delta Function

The generalized 3D delta function

5°(r) = 5(X)5(y)5(2)
where r is the position vector. It is zero everywhere
except at (0,0,0), where it blows up.

Its volume integral is:

Jy 8= [ [ [ 5005 (y)5(2)dxdydz =1

As in the 1-D case, the integral with delta function picks
out the value of the function at the location of the spike.

jdlm f (r)s3(r—a)dx= f (a)
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1.5.3 The three-Dimensional Dirac Delta Function (1)

We found that the divergence of r/ s zero everywhere
except at the origin, and yet its integral over any volume

containing the origin is a constant of 4r. The Dirac delta
function can be defined.as:

V-(5) = 48°(r)
r
More generally, "

v-(%) — 475°%(r)

where r is the separation vector r =r-r’. Note that the

differentiation here is with respect to r, while r’ is held
constant.

v =v. vty =v-L)=—a(r)
r r r
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1.6 The Theory of Vector Fields
1.6.1 The Helmholtz Theorem

To what extent is a vector function F determined by its
divergence and curl?

The divergence of F is a specified scalar function D,
V-F=D
and the curl of F is a specified vector function C,
VxF=C with V- (VxF)=V.C=0
Can you determine the function F?

Helmholtz theorem guarantees that the field F is uniquely

determined by the divergence and curl with appropriate
boundary conditions.
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1.6.2 Potentials (simple example)

If the curl of a vector field (F) vanishes (everywhere), then
F can be written as the gradient of a scalar potential (V):

VxF=0 = F:?VV

conventional

If the divergence of a vector field (F) vanishes (everywhere),
then F can be expressed as the curl of a vector potential (A):

V.-F=0 = F=VxA
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Homework #2

Problems: 1.37,1.39,1.42,1.45, 1.48
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