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7.2.3 Inductance

Two loops of wire at rest.
A steady current I1 around loop 1 B1
Some B1 passes through loop 2 Φ2
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ˆ  and 
4

I dd µ
π

×
Φ = ⋅ =∫ ∫
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r

0 1
2 1 21 12
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The constant of proportionality: 
mutual inductance of the two loops.
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Neumann Formula for the Mutual Inductance

2 1 1 1 2

0 1 1
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d d d
I dµ

π

Φ = ⋅ ∇× ⋅ ⋅
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∫ ∫ ∫
∫
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It involves a double line integral ---
one integration around loop 1, the 
other around loop 2.
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   Neumann formula
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µ
π
µ
π

⋅
Φ =

⋅
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∫ ∫

∫ ∫

l l

l l
r
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Important Things about Mutual Inductance

1. M21 is purely geometrical quantity, having to do with the 
size, shape, and relative position.

2. M21=M12, so we can drop the subscripts and call them M.

0 1 2
21 4

d dM µ
π

⋅
= ∫ ∫

l l
r

It is not very useful for practical 
calculation, but it reveals two 
important features.

Whatever the shapes and positions of the loops, the flux 
through 2 when we run current I around 1 is identical to the 
flux through 1 when we send the same current I around 2.

Advantage of M21=M12, see the following examples.
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Example

F 54.7
)0004.0)(10)(1500)(104( 7

1120
2

121

12201212

u

ANn
I

NM

AInAB

=
×=

=
Φ

=

==Φ

−π

µ

µ

A circular coil with a cross-sectional area of 4 cm2 has 10 
turns. It is placed at the center of a long solenoid that has 15
turns/cm and a cross-sectional area of 10 cm2, as shown 
below. The axis of the coil coincides with the axis of the 
solenoid. What is their mutual inductance?
Solution:

Notice that although M12=M21, it would have  been much 
difficult to find Φ21 because the field due to the coil is quite 
nonuniform.
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Self-Inductance

1
1

dIL
dt

= −E

It is convenient to express the induced emf in 
terms of a current rather than the magnetic flux 
through it. 

The magnetic flux is directly proportional to the 
current flowing through it. 

where L1 is a constant of proportionality called the self-
inductance of coil 1. The SI unit of self-inductance is the 
henry (H). The self-inductance of a circuit depends on its size 
and its shape.

The self-induced emf in coil 1 due to changes in I1 takes the 
form

11111 ILN =Φ
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Example 7.11 
Find the self-inductance of a toroidal coil with rectangular 
cross section (inner radius a, outer radius b, height h), which 
carries a total n turns.

Sol: 0

2
NIB
s

µ
π

=magnetic field 
Inside a toroidal

0 1 0 111
1 11
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∫

Example
A coaxial cable consists of an inner wire of radius a that 
carries a current I upward, and an outer cylindrical conductor 
of radius b that carries the same current downward. Find the 
self-inductance of a coaxial cable of length L. Ignore the 
magnetic flux within the inner wire.
Solution:

Hint1: The direction of the magnetic field.

Hint2: What happens when considers the inner flux? 8

LR Circuits

emf

0 0

0

0

Let 

   :   

0      :   0  

0 :   

(1 )

t t

t

R t
L

dIV IR L
dt

dII I e I e
dt

Re
L

R
R

t I
R

I e
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α α

α

β α
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β β

β

− −
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−

− − =

= + ⇒ = −

 =
 − = ⇒ =

 = = − = −

∴ = −
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E
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How does the current rise and fall as a function of time in a 
circuit containing an inductor and a resistor in series?

Rise

The quantity τ=L/R is called the time constant.
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LR Circuits

0 0

0

0

Let 

   :   

0 :   

t t

t

tR t
L

dIIR L
dt

dII I e I e
dt

Re
L

t I
R

I e e
R R

α α

α

τ

α

α

− −

−

−−

− − =

= ⇒ = −

 =

 = =


∴ = =

E

E E

Decay

The quantity τ=L/R is called the time constant.
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7.2.4 Energy in Magnetic Field
Inductance (like capacitance) is an intrinsically positive
quantity. Lenz’s law dictates that the emf is in such a 
direction as to oppose any change in current back emf.

It takes a certain amount of energy to start a current flowing 
in a circuit.
What we are concerned with are the work you must do 
against the back emf to get the current going.

Is this a fixed amount? Is it recoverable?
Yes, you get it back when the current is turned off.

It represents energy latent in the circuit or it can be regard as 
energy stored in the magnetic field.

11

Energy Stored in an Inductor
The battery that establishes the current in an inductor has to 
do work against the opposing induced emf. The energy 
supplied by the battery is stored in the inductor. 

In Kirchhoff’s loop rule, we obtain

2

2 21,    where 
2

L
L

diiR L
dt

dii i R Li
dt

dUi i R U LI
dt

= +

= +

= + =

E

E

E

power supplied 
by the battery

power dissipated
in the resistor

energy change rate
in the inductor 12

The Power
The work done on a unit charge, against the back emf, in 
one trip around the circuit is –E.

( )dW d Q dII LI
dt dt dt

−
= = − =

E E

the work done by 
you against the emf

Depends only on the geometry of the 
loop (in the form of L) and the final 
current I0. 

The total work done on per unit time is

The total work is 0 2
00

1
2

I dIW LI LI
dt

= =∫
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Energy Density of the Magnetic Field
We have expressed the total energy stored in the inductor in 
terms of the current and we know the magnetic field is 
proportional to the current. Can we express the total 
magnetic energy in terms of the B-field? Yes.

Let’s consider the case of solenoid.

space) freein  field magnetic a ofdensity energy  (The
2

2
)(

2
1

2
1

0

2
0

2
2

0
0

2

2
0

µ

µ
µ

µ

µ

Bu

ABAnILIU

AnL

B

L

=

===

=

Although this relation has been obtained from a special case, 
the expression is valid for any magnetic field.

14

Generalized Total Energy
There is a nicer way to write the total magnetic energy W.

21 1 1 1 ( )
2 2 2 2P P

W LI I I d dl= = Φ = ⋅ = ⋅∫ ∫A l A I

( )
S S P

d d d LIΦ = ⋅ = ∇× ⋅ = ⋅ =∫ ∫ ∫B a A a A l

S: surface bounded by P P: perimeter of the loop

generalize to the volume current

0

1 1 1( ) ( ) ,   where 
2 2P V

W dl dτ
µ

= ⋅ = ⋅ = ∇×∫ ∫A I A J J B

0

1 1( ) [ ( )]
2 2V V

W d dτ τ
µ

= ⋅ = ⋅ ∇×∫ ∫A J A B
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Generalized Total Energy II
Product rule 6,  ( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×A B B A A B

( ) ( ) ( )⋅ ∇× = ⋅ ∇× − ∇ ⋅ ×A B B A A B
B

0 0

2

0 0

1 1[ ( )] [ ( )]
2 2
1 1 ( )

2 2

V V

V S

W d d

B d d

τ τ
µ µ

τ
µ µ

= ⋅ ∇× = ⋅ − ∇ ⋅ ×

= − × ⋅

∫ ∫

∫ ∫

A B B B A B

A B a
divergence theorem

0

2

0 all space

1all space ( ) 0
2

1
2

S

V d

W B d

µ

τ
µ

→ × ⋅ →

=

∫

∫

A B a
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Electric and Magnetic Field Energy
Electric field energy

Magnetic fields themselves do no work. Where does the 
energy come from?

2 20 0
elec

1 ( ) ,         
2 2 2EW V d E d u Eε ερ τ τ= = =∫ ∫

energy density

Magnetic field energy
2 2

mag
0 0

1 1 1( ) ,      
2 2 2BW d B d u Bτ τ

µ µ
= ⋅ = =∫ ∫A J

A changing magnetic field induces an electric field which can 
do work.
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Example
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The breakdown electric field strength of air is 3x106 V/m. A 
very large magnetic field strength is 20 T. compare the energy 
densities of the field.

Solution:

Magnetic fields are an effective means of storing energy 
without breakdown of the air. However, it is difficult to produce 
such large fields over large regions.
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Example
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∫

Use the expression for the energy density of the magnetic field 
to calculate the self-inductance of a toroid with a rectangular 
cross section.
Solution:

Can we use the concept of magnetic flux to derive the self-
inductance?
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Example 7.13
A long coaxial cable carries current I (the current flows down 
the surface of the inner cylinder, radius a, and back along the 
outer cylinder, radius b) as shown in the Figure. Find the 
magnetic energy stored in a section of length l.

Sol:
0 ˆ

2
I
s

µ
π

=B φ

energy density

magnetic field
2

2 0
2 2

0

1
2 8B

Iu B
s

µ
µ π

= =

magnetic energy
2 2

0 0
2 2

2 0

2 ln( )
8 4

1      ln( )
2 2

B B
V V

B

I I bW u d l sds l
s a

l bW LI L
a

µ µτ π
π π

µ
π

= = =

= ⇒ =

∫ ∫

self-inductance
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7.3 Maxwell’s Equations
7.3.1 Electrodynamics before Maxwell

Ampere’s law is incorrect for the nonsteady current.

electromagnetic theory 
over a century ago

A fatal inconsistency in Ampere’s law

0

0

1 (Gauss's law)

0 (no name)

(Faraday's law)

(Ampere's law)
t

ρ
ε

µ

∇ ⋅ =

∇ ⋅ =
∂

∇× = −
∂

∇× =

E

B
BE

B J

0( ) µ∇ ⋅ ∇× = ∇ ⋅B J

=0 ≠0
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The Electric and Magnetic Fields

Two distinct kinds of magnetic fields: 

B (in static case): attributed to electric currents, using 
Ampere’s law. 
B (in nonsteady case): associated with changing electric 
field, using?

Two distinct kinds of electric fields: 

E (in static case): attributed to electric charges, using 
Coulomb’s law. 
E (in nonsteady case): associated with changing 
magnetic field, using Faraday’s law.

22

Another Inconsistency of Ampere’s Law

* The simplest surface---the wire puncture this surface 
so Ienc=I Ampere’s law is ok.

How do we determine the enclosed current Ienc?

0 encd Iµ⋅ =∫ B l

* A bollon-shaped surface---no current passes through 
this surface. so Ienc=0 Ampere’s law is not valid!

For nonsteady current, “the current enclosed by a loop”
is an ill-defined.
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How Maxwell Fixed Ampere’s Law
Applying the continuity equation and Gauss’s law, 
the offending term can be rewritten:

0 0 0( ) ( ) ( ) 0
t

µ µ ε ∂′∇ ⋅ ∇× = ∇ ⋅ = ∇ ⋅ + =
∂
EB J J

0
0

( ) ( )
t t t

ερ ε∂ ∇ ⋅∂ ∂
∇ ⋅ = − = − = ∇ ⋅ −

∂ ∂ ∂
E EJ

0A new current    kills off the extra divergence
t

ε ∂′ = + ←
∂
EJ J

When E is constant (electrostatic+magnetostatic), we 
will have                     . 0µ∇× =B J

plays a crucial role in the EM wave propagation.0 t
ε ∂

∂
E
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Electric Analogy of Faraday’s Law
Maxwell’s term cures the defect in Ampere’s law, 
and moreover, it has a certain aesthetic appeal.

Maxwell called this extra term “the displacement current”.

d 0 t
ε ∂

≡
∂
EJ a misleading name, 

nothing to do with current

A changing electric field induces a magnetic field.

A changing magnetic field induces a electric field.

Faraday’s law
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The Displacement Current
How the displacement current resolves the paradox of the 
charging capacitor.

0 0

1 QE
A

σ
ε ε

= =

J=J, Jd=0 at the flat surface
J=0, Jd=J at the balloon-shaped surface

The electric field between 
the two capacitor plates is

0
1E Q I J

t A t A
ε ∂ ∂

= = =
∂ ∂

the charge on the plate
the area of the plate

tot d= +J J J
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7.3.3 Maxwell’s Equations

Continuity equation

Lorentz force law

0

0 0 0

1 (Gauss's law)

0 (no name)

(Faraday's law)

(Ampere's law with 
Maxwell's correction)

t

t

ρ
ε

µ µ ε

∇ ⋅ =

∇ ⋅ =
∂

∇× = −
∂

∂
∇× = +

∂

E

B
BE

EB J

Maxwell’s equations in the traditional way.

t
ρ∂

∇ ⋅ = −
∂

J

( )q= + ×F E v B
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Maxwell’s Equations (II)

The fields (E and B) on the left 
and the sources (ρ and J) on the right.

0

0 0 0

0

0

t

t

ρ
ε

µ ε µ

∂
∇ ⋅ = ∇× + =

∂

∂
∇ ⋅ = ∇× − =

∂

BE E

EB B J

Another expression of the Maxwell’s equations.

Maxwell’s equations tell you how sources produce 
fields; reciprocally, the Lorentz force law tells you how 
fields affect sources.  A nonlinear feedback
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7.3.4 Magnetic Charge

Both charges would be conserved:

If there is a magnetic “charge” ρm and the corresponding 
current of the magnetic “current” Jm, the Maxwell’s 
equations read

e m
e m,  and  

t t
ρ ρ∂ ∂

∇ ⋅ = − ∇ ⋅ = −
∂ ∂

J J

e
0 m

0

0 m 0 0 0 e

t

t

ρ ε
ε

µ ρ µ ε µ

∂
∇ ⋅ = ∇× + = −

∂
∂

∇ ⋅ = ∇× − =
∂

BE E J

EB B J

A symmetric 
between E and B
E B
B -µ0ε0E

Q: Has any one ever found the magnetic charge?
No. 
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7.3.5 Maxwell’s Equations in Matter
When working with materials that are subject to electric and 
magnetic polarization, there is a more convenient way to 
write the Maxwell’s equations.

b

b

ρ = −∇ ⋅
= ∇×

P
J M

An electric polarization produces a bound charge:
A magnetic polarization results in a bound current: 

polarization current 
(nothing to do with the bound current). 

Any change in the electric polarization involves a flow of 
bound charge. 

b
p b ˆ   where d dadI

da dt da t
σ σ⊥

⊥ ⊥

∂
= = = = ⋅

∂
PJ P n

Static case:

Nonstatic case: 
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Polarization and Bound Currents
Bound current Jb: magnetization of the material involving 
the spin and orbital motion of electrons.

f b f

f b p f t

ρ ρ ρ ρ= + = − ∇ ⋅
∂

= + + = + ∇× +
∂

P
PJ J J J J M

Gauss’s law:

Now 

Polarization current Jp: the linear motion of charge when 
the electric polarization changes.

f 0 f
0

1 ( )    ( )ρ ε ρ
ε

∇ ⋅ = − ∇ ⋅ ⇒ ∇ ⋅ + =E P E P

Ampere’s law: 0 f 0 0

f 0
0

( )

1( ) ( )

t t

t

µ µ ε

ε
µ

∂ ∂
∇× = + ∇× + +

∂ ∂
∂

⇒ ∇× − = + +
∂

P EB J M

B M J E P
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Maxwell’s Equations in Matter
In terms of free charges and currents, Maxwell’s equations 
read

The constitutive relations:

0 0 (1 )eε ε χ ε= + = + =D E P E ESo

0 m
0

1       (1 )µ χ µ
µ

= − ⇒ = + =H B M B H H

f

f

0

0

t

t

ρ ∂
∇ ⋅ = ∇× + =

∂
∂

∇ ⋅ = ∇× − =
∂

BD E

DB H J

0 eε χ=P E

0 mµ χ=M H
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7.3.6 Boundary Conditions (I)
Differential form Integral form

f

0
ρ∇ ⋅ =

∇ ⋅ =
D
B

f

 over any enclosed surface .
0

S

S

d
S

d

ρ ⋅ =



⋅ = 


∫

∫

D a

B a

f

1 2 f 1 2 f

1 2 f 1 2

  

    

0

    0

S

S

d

D D

d

B B

ρ

σ σ

σ

⊥ ⊥

⊥ ⊥

⋅ =

⋅ − ⋅ = ⇒ − =

⋅ =

⋅ − ⋅ = ⇒ − =

∫

∫

D a

D a D a a

B a

B a B a a
wafer thin 
Gaussian pillbox
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Boundary Conditions (II)
Differential form Integral form

f

0
t

t

∂
∇× + =

∂
∂

∇× − =
∂

BE

DH J f

  P S

P S

d d
t

d d
t

∂ ⋅ = − ⋅ ∂ 
∂ ⋅ = + ⋅

∂ 

∫ ∫

∫ ∫

E l B a

H l J D a

for any surface 
bounded by the 
closed loop .

S

P

enc enc

enc

// //
1 2 1 2

f

1 2 1 2

1 2

  

    0

    ( )

ˆ ˆ ˆ( ) ( )      ( )

P S

S

P S

f f
S

f f f f

d d
t

d
t

d d
t

I d I
t

I

⊥ ⊥

⊥ ⊥

∂
⋅ = − ⋅

∂
∂

⋅ − ⋅ = − ⋅ ⇒ − =
∂

∂
⋅ = + ⋅

∂
∂

⋅ − ⋅ = + ⋅ ⇒ − ⋅ =
∂

= ⋅ × = × ⋅ ⇒ − = ×

∫ ∫

∫

∫ ∫

∫

E l B a

E l E l B a E E

H l J D a

H l H l D a H H l

K n l K n l H H K n

very thin Amperian
loop straddling the 
surface
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Boundary Conditions in Linear Media
// //

1 2 f 1 2

1 2 1 2

0
ˆ0 ( )f

D D
B B

σ⊥ ⊥

⊥ ⊥ ⊥ ⊥

− = − =
− = − = ×

E E
H H K n

In case of linear media, D and H can be express in terms of 
E and B. // //

1 1 2 2 f 1 2

1 2 1 2
1 2

0
1 1 ˆ0 f

E E

B B

ε ε σ

µ µ

⊥ ⊥

⊥ ⊥ ⊥ ⊥

− = − =

− = − = ×

E E

B B K n

If there is no free charge or free current at the interface, 
then // //

1 1 2 2 1 2

1 2 1 2
1 2

0 0
1 10 0

E E

B B

ε ε

µ µ

⊥ ⊥

⊥ ⊥ ⊥ ⊥

− = − =

− = − =

E E

B B
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Homework of Chap.7 (part II)

Prob. 31,  40,  42,  53,  57


