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Chapter 8: Conservation Laws
8.1 Charge and Energy   8.1.1 The Continuity Equation

Conservation laws 
in electrodynamics

Charge
Energy
Momentum
Angular momentum

the paradigm

Global conservation of charge: the total charge in the universe 
is constant.
Local conservation of charge: If the total charge in some 
volume changes, then exactly that amount of charge must 
have pass in or out through the surface.
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The Continuity Equation

Q1: The energy and momentum density analogous to ρ.
Q2: The energy and momentum “current” analogous to J.

(invoking the divergence theorem)

This equation is a precise mathematical statement of the 
local conservation of charge. 
It can be derived from Maxwell’s equations.
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(a consequence of the law of electrodynamics)

3

8.1.2 Poynting’s Theorem (I)
The work necessary to assemble a static charge distribution

The total energy stored in the electromagnetic fields is
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The work required  to get current going
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Q: Can we derive this equation in a more general and more 
persuasive way? 4

Poynting’s Theorem (II)
Starting point: How much work, dW, is done by the 
electromagnetic forces acting on these charges in the 
interval dt?

(the work done per unit time, per unit volume
i.e. the power deliver per unit volume)
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Q: Can we express this quantity in terms of the fields alone?

(using the Lorentz force law)
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Yes, use the Ampere-Maxwell law to eliminate J, 
analogous to the proof of the continuity equation.
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Poynting’s Theorem (III)

(product rule 6)
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(invoking the divergence theorem) 6

Poynting’s Theorem and Poynting Vector
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(S: the energy flux density)

Poynting’s theorem: “work-energy theorem” of electrodynamics.

(total energy stored in the field, Uem)

(the rate at which energy is carried out of 
V, across its boundary surface S, by the 
electromagnetic fields.)

Poynting vector: the energy per unit time, per unit area, 
transported by the fields.
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Differential Form of Poynting’s Theorem
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(the differential form of Poynting’s theorem)
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(umech: the mechanical energy density)

(uem: the energy density 
of the fields)

mech emV V S

d du d u d d
dt dt

τ τ= − − ⋅∫ ∫ ∫ S aSo

mech em ( )
V V V

d du d u d d
dt dt

τ τ τ= − − ∇⋅∫ ∫ ∫ S
(divergence theorem)

mech em( )u u
t
∂

+ = −∇⋅
∂

S

Q: What’s the difference between      and      ?
t
∂
∂

d
dt

8

Example 8.1 

(point radially inward)

0

1 ( )
µ

≡ ×S E B

When current flows down a wire, work is 
done, which shows up as Joule heating of 
the wire. Find the energy per unit time 
delivered to the wire using Poynting vector?

Sol: ˆV
L

=E z

0 ˆ( )
2

Ir a
a

µ
π

= =B φ

0

0

1 ˆ ˆˆ( )
2 2

IV VI
L a aL

µ
µ π π

= × = −S z φ rSo

The energy per unit time passing through the surface of the 
wire is:
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8.2 Momentum
8.2.1 Newton’s ThirdLaw in Electrodynamics

Suppose two charges, q1 and q2, proceed 
in along x axis and y axis, respectively. 
They can only slide on the axes with 
velocities v1 and v2 as shown in the figure. 
Q: Is the Newton’s third law valid?
The electric force between them satisfies the third law, but 
the magnetic force does not hold (same magnitudes, but 
their directions are not opposite).

Q: How to rescue the momentum conservation? 

In electrodynamics the third law does not hold. The proof of 
conservation of the momentum, however,  rests on the cancellation 
of the internal forces, which follows from the third law.

The fields themselves carry momentum. (Surprise!) 10

The Fields of a Moving Charge

The electric field of a 
moving charge is not given 
by Coulomb’s law.

The magnetic field of a moving 
charge does not constitute a 
steady current. Thus it is not 
given by Biot-Sarvart law.
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8.2.2 Maxwell’s Stress Tensor
The total electromagnetic force on the charges in volume V: 

Eliminate ρ and J by using Maxwell’s equations.

( ) ( )
V V V

d d dρ τ ρ τ τ= + × = + × =∫ ∫ ∫F E v B E J B f

Where f denotes the force per unit volume. 
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Maxwell’s Stress Tensor (II)
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Maxwell’s Stress Tensor (III)
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It can be simplified by introducing the Maxwell stress tensor.
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Maxwell’s Stress Tensor (IV)
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Because Tij carries two indices,
it is sometimes written with a 
double arrow     .
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Q: How does the tensor operate?

1 if 
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δ
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See, “Vector Analysis”, Chap.8,   M. E. Spiegel, McGRAW-HILL.
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Maxwell’s Stress Tensor (V)
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The divergence of the Maxwell stress tensor is:

On can form the dot product of tensor    with a vector a:T
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Maxwell’s Stress Tensor (VI)

Physically, the Maxwell stress tensor is the force per unit 
area acting on the surface.

The force per unit volume:

0 0 t
ε µ ∂

= ∇⋅ −
∂
Sf T

The total force on the charges in V is:

0 0
S V

dd d
dt

ε µ τ= ⋅ −∫ ∫F T a S
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Example 8.2 
A uniformly charged solid sphere of radius 
R and charge Q is cut into two hemisphere. 
Find the force required to prevent the 
hemisphere from separating.

Sol:

3
0

1 ˆ
4

Qr
Rπε

=E r

The net force is obviously in the z-direction. 

This is an electrostatics, no magnetic field involved.

The boundary surface consists of two parts---bowl and disk.
S

d= ⋅∫F T a

( )z z zx x zy y zz zdF d T da T da T da= ⋅ = + +T a

Express the electric component in Cartesian coordinate. 
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Example 8.2 (II) 
Cont’: ˆ ˆ ˆ ˆsin cos sin sin cosθ φ θ φ θ= + +r x y z

The force on the bowl is:
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=
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Example 8.2 (III) 
Cont’:

The force on the disk is:
2 2

2 30
disk 3 2

0 00 0

1( )
2 4 4 16

R

r

Q QF r drd
R R

π

φ

ε φ
πε πε= =

= =∫ ∫

The net force on the northern hemisphere is:
2

2
0

1 3
4 16

QF
Rπε

=

Q: Can we solve this problem using a simpler approach?
Yes, we can use the potential energy to find the net force.
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8.2.3 Conservation of Momentum
Newton’s second law the force on an object is equal to 
the rate of change of its momentum.

where pmech is the total (mechanical) momentum of the 
particles contained in the volume V.

mech
0 0

S V

d dd d
dt dt

ε µ τ= = ⋅ −∫ ∫
pF T a S
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em
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 =

 = = =


∫

∫ ∫ ∫

p g

p S p S g

(an analogous interpretation, 
not a rigorous proof)

(momentum stored in the 
electromagnetic fields themselves)

(momentum density)
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Conservation of Momentum (II)
(the momentum per unit time flowing in through the surface.

Conservation of momentum in electrodynamics: 
Any increase in the total momentum (mechanical plus 
electromagnetic) is equal to the momentum brought in by 
the fields.

S

d⋅∫ T a

mech em( ) ( )
t
∂

+ = −∇⋅ −
∂
g g T (in differential form)

(momentum flux density, playing the role of J in 
continuity equation, or S in Poynting’s theorem)
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Conservation of Momentum (III)

The roles of Poynting’s vector:

T

−T

S

0 0µ ε S

The roles of momentum stress tensor:

the energy per unit area, per unit time, transported by 
electromagnetic fields.

the momentum per unit volume stored in those fields.

the electromagnetic stress acting on a surface.

the flow of momentum transported by the fields.
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Example 8.3 (hidden momentum) 
A long coaxial cable, of length l, consists of an inner 
conductor (radius a) and an outer conductor (radius b). It is 
connected to a battery at one end and a resistor at the other. 
The inner conductor carries a uniform charge per unit lengthλ, 
and a steady current to the right; the outer conductor has the 
opposite charge and current. What is the electromagnetic 
momentum stored in the fields.
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Sol:

0

1 ˆ
2 s

λ
πε

=E s

There is “hidden” mechanical momentum associated with the 
flow of current, and this exactly cancels the momentum in the 
fields.

The fields are

In fact, if the center of mass of a localized system is at rest,
its total momentum must be zero.
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I
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µ
π

=B φ
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4

I
s

λ
µ π ε

≡ × =S E B z

The momentum in the fields is:
0 0

em 0 0 2 2

1 ˆ ˆ2 ln( / )
4 2

b

a

I Ild l sds b a
s

µ λ µ λµ ε τ π
π π

= = =∫ ∫p S z z

(an astonishing result!)
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8.2.4 Angular Momentum
The electromagnetic fields carry energy and momentum, not 
merely mediators of forces between charges.

Even perfectly static fields can harbor momentum and 
angular momentum. See the following example.

em 0 0 0 ( )ε µ ε= = ×g S E B

2 2
em 0 0

1 ( )
2

u E Bε µ= +

How about the angular momentum ?

em 0[ ( )]em ε= × = × ×r g r E B (again, not a rigorous proof)
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Example 8.4 

Imagine a very long solenoid with radius R, n
turns per unit length, and current I. Coaxial 
with the solenoid are two long cylinderical
shells of length l---one, inside the solenoid at 
radius a, carries a charge +Q, uniformly 
distributed over the surface; the other, 
outside the solenoid at radius b, carries 
charge –Q. When the current in the solenoid 
is gradually reduced, the cylinders begin to 
rotate, as we found in Ex. 7.8. Where does 
the angular momentum come from?
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Sol:

0

1 ˆ  ( )
2

Q a s b
lsπε

= < <E s

The total angular momentum in the fields is:

The fields are

The angular momentum density is:

0 ˆ   ( )nI s Rµ= <B z

The momentum density is:
0

em 0 0 0 ˆ   ( )
2

nIQ a s R
ls

µµ ε ε
π

= = × = − < <g S E B φ

(an astonishing result!)

0
em em 0 ˆ[ ( )]   ( )

2
nIQ a s R

l
µε
π

= × = × × = − < <r g r E B z

2 20
em em ˆ( )

2
nIQL d R aµτ= = − −∫ z
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Homework of Chap.8

Prob. 1, 4, 6, 10 ,12, 15


