Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension 9.1.1 The Wave Equation

What is a “wave”?

A start: A wave is disturbance of a continuous medium that
propagates with a fixed shape at constant velocity.

In the presence of absorption, the wave will diminish in
Size as it move,

If the medium is dispersive different frequencies travel at
different speeds;

Standing waves do not propagate;

Light wave can propagate in vacuum;...
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The Wave Equation

How to represent such a “wave” mathematically?

Hint: The wave at different times, once at t=0, and again at
some later time t --- each point on the wave form simply shifts
to the right by an amount vt, where v is the velocity.

initial shape f(z,0)=9(2)
subsequent form f(zt)="

(capture (mathematically) the
F(z1)=f(z-w,0)=g(z2-V) ggsence of wave motion.)

The function f(zt) depends on them only in the very special
combination z-\t;

When that is true, the function f(zt) represents a wave of
fixed shape traveling in the z direction at speed v.

The Wave Equation (lI)
f(z,t) = Ae=W"
f,(z,t) = Asin[b(z—wt)]

A
D = p

Examples:

How about these functions?
f,(zt) = Ag W

f.(zt) = Asin(bz) cos(bvt)
_ g[si n(b(z+vt)) +sin(b(z—vt))] < a standing wave
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The Wave Equation of a String

From Newton’s second law we have

F[Sin@+A0)—sin(@)]= (#AX)%

Small angle approximation:
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The Wave Equation

Derive the wave equation that a disturbance propagates
without changing it shape.

f(zt)=g(z—w); Letu=z-wt

2 2
o _dou_dg _ Of_ 0 dg .dg
ot du ot du ot at du du?
of _df ou dg o°f dg d2g
ZOA 8, =)
0z duoz du 0z> 0z du’ du?
d’g 1 0°f o°f o°f 1 o*f
=— = = —=—=0 ed
du®? V* ot o7 0z> V* ot? q
+Vv or —

f(z,t) =g(z—vt) + h(z+vt) thewaveequationislinear.
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9.1.2 Sinusoidal Waves
wave speed
(i) Terminology
f(z,t) = Acogk(z—wt) + o]

amplitude  wave number phase constant

f(z,t) = Acogk(z—wt) + 0] = Acos(kz— wt + 5)

k= Zj A. wave length Cenral

w=kv= 27[;:27z'f J | :'“;w_l “.__-:_'JT-_
w: angular frequency =T t—a—
f: frequency

Sinusoidal Waves
(i) Complex notation

Euler's formula € =cos@+isinéd
f(zt) = Acoglk(z—-vt) + 5] = Re Ae gl
— Re[ A\iﬁei(kz—a)t)] e[ I(kZ—a)t)]
f = Ad@) complex wave function
A= A€’ complex amplitude

f(zt)=Re[ f(z,1)]

The advantage of the complex notation is that exponentials

are much easier to manipulate than sines and cosines.
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Example 9.1

The advantage of the complex notation.
Suppose we want to combine two sinusoidal waves:

f3: f1+ f2=Re[f1]+Re[f2]:Re[fl+ 1?z]zRe[i?a]

Simply add the corresponding complex wave functions, and
take the real part.

In particular, when they have the same frequency and wave
number

A I(kZ wt) 'A2 I(kZ wt) _ A)’ I(kZ wt)
where A = Ag* = AE” + Ag”

Try doing this without using the complex notation.




Sinusoidal Waves (lII)

(iii) Linear combinations of sinusoidal waves
f(zt)= j_“’ AKXk, where @=a(K)

A(K) can be obtained in terms of theinitial conditions
f (z,0) and f (z,0) from the theory of Fourier transforms.

Any wave can be written as a linear combination of
sinusoidal waves.

So from now on we shall confine our attention to sinusoidal

waves.
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9.1.3 Boundary Conditions:
Reflection and Transmission
Incident wave: f (z,t)= A=
Reflected wave: fR(z,t) = ARe'( kyz-at)
Transmitted wave:  f (zt) = A g™

* All parts of the system are oscillating at the same frequency .

The wave velocities are different in two v k A
regimes, which means the wave lengths L=—2=2
and wave numbers are also different.

2
k4

Vv,

The waves in the two regions:

- A gzt 4 A dkz=el) for 7 < 0
f(Z,t)Z{Ae + A€

A gteren forz>0 .

Boundary Conditions
Mathematically, f(zt) is continuous at z=0.
f(0,t)=f(0,1)

The derivative of f(zt) must also be continuous at z=0.

i = i Why?
dz|, dz|,
I-:F.,bh:: II |‘-7ri:.-‘-h.||
i il s ahoper, Tonca im keand AT s glope o (o o KB
The complex wave function obeys the same rules: Why?
af | df

f(o,t)=f(0',1);

dz o dz o

Boundary Conditions Determine the Complex

Amplitudes
fo,=fo',1) = A+A=A
B oh = KA -A)-lA
e h ~}: A, - (E EZ)A—(VZ Y2~V A
CATAITRAT A <A = (DA

When v,>v, all three waves have the same phase angle.
When v,<v, the reflected wave is out of phase by 180°.

Consider two extreme cases, open end and fixed end.




The Open End and Fixed End
Superposition of the actual pulse and an imaginary pulse.

1
.
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9.1.4 Polarization

Transverse waves: the displacement of the wave is
perpendicular to the direction of propagation, e.g. EM waves.

Longitudinal waves: the displacement of the wave is along
the direction of propagation, e.g. sound waves.

Transverse waves occur in two independent states of polarization:

N

fv(z,t) — Adeang f'h(z,t) _ Aei(kz—wt)y
General form: f(z,t) = Ad®’f, where f =cosgx+sindy

‘h‘{::: o
LT
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Right and Left Hand Circular Polarizations
Yi Y&

&¢0.0 &0,

2 4pagation z /Propagation

(a) (b

.
=¥

Electric field polarization for (a) RHCP and (b) LHCP plane waves.
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9.2 Electromagnetic Waves in Vacuum
9.2.1 The Wave Equation for E and B

In regions of space where there is no charge or current,
Maxwell's equations read

() V-E=0 (i) vxE=-8
o
(i) V-B=0 (iv)vXB:ﬂogo‘Z_lt*:
2
vxxB)=-2B o v(@R) -V =, O F
2
VX (VXB) = iy T = V(Y B)-VB =gy oL
2 0°E
VE = thhey—5
_ [V-E=0 o
since o |:> B
VB V?B = u ¢,

atZ 16




The Wave Equation for E and B

In vacuum, each Cartesian component of E and B satisfies
the three-dimensional wave equation

2
E
VZEZ#OEOZ? 1 5%
— sz =— 2
2 o’B Ve ot
VB:#O‘gO?

Maxwell’'s equations imply that empty space supports the
propagation of electromagnetic waves, traveling at a speed
1

\ Moo

V=

=3x10° m/s <— the speed of light
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Hertz’'s Experiment

When Maxwell’'s work was published in 1867 it did not
receive immediate acceptance. It is Hertz who conclusively
demonstrated the existence of electromagnetic wave.

i
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9.2.2 Monochromatic Plane Waves

Since different frequencies in the visible range correspond
different colors, such waves are called monochromatic.

to

This definition can be applied to the whole spectrum. A wave

of single frequency is called a monochromatic wave.

The Visible Range

Frequency (Hz) i Color Wavelength (m)
1.0 x 10 B near ultraviolet 30 x 1077
7.5 x 104 shortest visible blue 4.0 x 1077
6.5 x 119 blue 4.6 x 107
5.6 x 10'4 green 5.4 % 1077
5.1 % 10 yellow S8 x 1077
L 4.9 x 1014 orange 6.1 % 1077
3.9 x 104 fongest visible red 7.6 % 1077
3.0 x 1074 near infrared 1.0 x 1075
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The Electromagnetic Spectrum

Electromagnetic waves span an immerse range of
frequencies, from very long wavelength to extremely high
energy with frequency 1022 Hz. There is no theoretical limit
to the high end.
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Mainly Heating Effect in Micro/mm-Wave Spectrum

Windows for Research and Application Opportunities

T —
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Spectrum to Be Exploited
--- Significance of the Electron Cyclotron Maser

one photon multiple-photon  multiple photon
per excitation, per electron, per electron,
large interaction large interaction interaction space
space space ~ wavelength
J ) )
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“15‘_
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1::4 1 cr‘ 1
Wavelength (mm) 23

Average Power (Watts)
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Monochromatic Plane Waves

Consider a monochromatic wave of frequency o and the
wave is traveling in the z direction and has no x or y
dependence, called plane waves.

Plane waves: the fields are uniform over every plane
perpendicular to the direction of propagation.

Are these waves common? Yes, very common.

{E(z ) = E e

B(z.t) = B g where E, and B, are the complex amplitudes.
z

24




Transverse Electromagnetic Waves

Q: What is the relation between E and B?

V-E=0 aaEzz(Eo)ziké“M‘):o = (E,),=0
z
oB 5\ i L (kz—ot) 5
V-B=0 2 =(B,),ike =0 =(B),=0
z

That is, electromagnetic waves are transverse: the electric
and magnetic fields are perpendicular to the direction of
propagation. Moreover, Faraday’s law Vsz_a_B

Transverse Electromagnetic Waves (ll)

. . E
Ampere’s law with Maxwell’s correction: VxB = /uogo%

ISH

o(B = =
0(By), _ (o)v:ﬂ%@ = k(By), = oze(Ey),

oy oz °
.. 0(By), 0By, o(Ey), S\ =
pe - x ogo—at k(By), = ﬂogoa’(Eo)y
7 a(BO)y _a(BO)x = 116, a(Eo)z = 0=0
ox oy ot

1

ot S 9
@ ~ ~ C=—=
< 5(855)2 ~ (aE;)y :_a(gs)x K(E,), =—o(By), In free space, the speed of light is ” \/ﬂ
A S R
(B ~ B More compactly, B,=—(zxE,)==(zxE,) = ELB
~ a(g;)x _ a(;‘;)z - (a;:))y = k(EO)>< — G)(Bo)y 0 a)( O) C( 0)
. . 1
amplituderelation: B, ==
0E)y &), __B), _ o, . P e ,
ox oy ot
Example 9.2 Plane Waves Traveling in an Arbitrary Direction
Phrove: IfE poi_ntshin th; xdirection. | & There is nothing special about the z :/’f
then B points in the y direction. F direction---we can generalize to / N

Sol:  E(zt)=E€&™™x
Bo= X g = LE g0 iy = LE 0
Take the real part:
E(zt) = E, cos(kz— ot + §)X
B(zt)= % E, cos(kz— wt + &)y

Q: Why not use sin function?
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monochromatic plane waves traveling in Y,
an arbitrary direction. L

The propagation (or wave) vector, k: pointing in the
direction of propagation.
Generalization of kz using the scalar product k-r.

E(r,t) = E,*h « the polarization vector
B(r,t) = 1 E,® ) (k xh) = ik
c c

Q: Can you write down the real electric and magnetic fields?
28




9.2.3 Energy and Momentum in

Electromagnetic Waves
The energy per unit volume stored in the electromagnetic
field is 1 1
u==(gE>+—B?)
2 Hy
Monochromatic plane wave: B?= iz E? = 1,6, E?
c
u= 1(5OE2 +i B?) = 1(goE2 +£,E?) = g,E*
2 Ho 2

Their contributions are equal.
u=¢g,E* = ¢,E,” cos’ (kz— at + &)
As the wave travels, it carries this energy along with it.

Q: How about the momentum? See next slide.
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Energy Transport and the Poynting Vector

Consider two planes, each of area A, a distance dx apart,
and normal to the direction of propagation of the wave. The
total energy in the volume between the planes is dU=uAdx.

The rate at which this energy through a unit area normal to

the direction of propagation is g
goldU 1 adx_ o ~
Adt A dt :
S=uc= EB 1““;
Hy __i,-f’
ExB ol
S= (the vector form) M
Ho )

g :izS :izgoEo2 cos’(kz— ot +6)z 1
Cc Cc Cc 30

Average Effect

In the case of light, the period is so brief, that any
macroscopy measurement will encompass many cycles.

All we want is the average value.

(u) = ek

(8) = (ue) = el

1 1,
<g>=g<s>=2—cgoEoZ

The average power per unit area transported by an
electromagnetic wave is called the intensity:

| =(8) = ceof
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Example

A radio station transmits a 10-kW signal at a frequency of 100
MHz. For simplicity, assume that it radiates as a point source.
At a distance of 1 km from the antenna, find: (a) the amplitude
of the electric and magnetic field strengths, and (b) the energy
incident normally on a square plate of side 10 cm in 5 min.

Solution:
Average power 2
(@) s, - Averageponer &
4rr 2u,C
:&OOZX 2x4xx107 x3x10° = E?
471000
E, =0.775 V/m
B, = 258x10° T

(b) AU =S, AAt=24x10"° J

32




Momentum and Radiation Pressure
An electromagnetic wave transports linear momentum.

The linear momentum carried by an electromagnetic wave is
related the energy it transport according to

u
p=—
C

If surface is perfectly reflecting, the momentum change of
the wave is double, consequently, the momentum imparted
to the surface is also doubled.

The force exerted by an electromagnetic wave on a surface
may be related to the Poynting vector
F_Ap AU _SA\_S_u

A AAt AcAt Ac ¢

33

Momentum and Radiation Pressure (II)

The radiation pressure at normal incident is
F S
—=—=U
A c

Examples: (a) the tail of comet, (b) A “solar sail”

Homework of Chap.9 (1)

Prob. 2, 6, 8, 10, 12
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9.3 Electromagnetic Waves in Matter
9.3.1 Propagation in Linear Media

In regions where there is no free charge and free current,
Maxwell's equations become

v.p=0 vxE=-2B
ot

V-B=0 Vtza—D
ot

If the medium is lineatr, D=¢E and H:EB

M
If the medium is linear and V.E-0 vxE-_B
homogeneous (¢ and p do not vary ot
from point to point), E

V-B=0 Vsz/wa—
ot




The Index of Refraction

Electromagnetic waves propagate through a linear

homogeneous medium at a speed L
O°E v= ==
2
V°E = ,ueat :>V2f_i62f \ HE
VB = O°B vt n= [
He ot2 T Hoéo

The index of refraction of the material

For most material, x is very close to g, so N= P N
0

Since ¢ is almost always greater than 1, light travels
more slowly through matter.

Q: What happens when ¢ is less than 1 or negative?
Very interesting.
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Energy Density, Poynting Vector, and Intensity in

Linear Media
All of our previous results carry over, with the simple
transcription 1 1 1 .
u==(¢E*+=B? g=—uz
& D E 2 u
Mo —> H ExB 1 .,
cv S= p |=<S>—§V8E0

Q: What happens when a wave passes from one
transparent medium into another? Boundary conditions.

D, -D, =o; E/-E,=0
B -B; =0 H;-H;=(K,xn)
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9.3.2 Reflection and Transmission at Normal
Incidence

A plane wave of frequency o, traveling in the z direction and
polarized in the x direction, approaches the interface from the

left.
P, s | E
Incident wave: Pl f_,r -

gzt g B, L/ s -
E (zt)= E0 5 A ;
B, (z,t)_ EOI [(tz-et)

L1 el S

Reflected wave: Transmitted wave:
ET (zt) = EOTei(kZZWt)’A(

Eq(zt) = Eg V%
- 1z .
B, (zt) = —E, €%y

il 1 = i(—k,z—ot) ~
BR(Z!t)z__EORe( “ t)y V.
' 2 39

The Boundary Conditions
Normal incident: no components perpendicular to the surface.
E0| + EOR = E0T
1 - ~ 1 -
o, o ~Eor) =By

= (Ey — Eor) = BEsr Whereﬂ:ﬂi—\/l

Mo\,
In terms of the incident amplitude:
o= p,)Eo. o -G B
Eor <ﬁ>Eo. E0T=(V1+ZVZ)EO. )




Determine the Complex Amplitudes of a String

Incident wave: f(z t) = A g (kuz-at)

fa(z.0) = A

Transmitted wave:  f_(z,t) = A=

Reflected wave:

B d £0- +\_ f(N* d_f —d_f

ey fe-ion 9 -4
=Koy 5 _ Vo=V,

Aeh A ~}: A= e k)A (A
k(A = A) = kA A -2 2V, \&

A= SOA=C A

When v,>v,, all three waves have the same phase angle.
When v,<v;, the reflected wave is out of phase by 180°. **

Reflection and Transmission Coefficients

The reflected wave is in phase if v, >v;
and is out of phase if v, <v;

= _ Vo~V — =M=
B = (B = ()
= _ 2V2 = _ 2nl
EOT—(V1+V2)E0| o
The intensity (average power per unit area) is: | E<S>=%V€E§

Reflection coefficient R= & = (L= "ey2
[, n+n,

I &N, , 2n 2 4nn,

Transmission coefficient T = I—T =

&V n+n, - (n+ n2)2
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9.3.2 Reflection and Transmission at Oblique

Incidence
Suppose that a monochromatic plane wave of frequency o,
traveling in the k, direction :

Incident wave:

E (rt)= EOI g (kir=et)

Plane of lncidzner

B| (r,t) :_(k| ><1::|)

1 iy =

Reflected wave:
(r t) E I(er wt)

Transmitted wave:

ET (r,t) = EOTei(kT'r""‘)
- - 1 ~ -~

BR(r,t)zv(kaER) B, (r,t)=—(k; xE;)

! 2 43

Boundary Conditions

All three waves have the same frequency .

o=k, =ky, =k, or k =k, =2k =tk
Vl n2

Using the boundary conditions
51E1L_52E2lzo Ei/_ElleO
B -B, =0 iBf—iBg=o

H H
A generic structure for the four boundary conditions.

() (k|r wt)+() i(kgr—ot) _ () (kTr wt)

44




Laws of Reflection and Refraction

6,, 65, and €, areangles
of incidence, reflection,
and refraction, respectively.

k, - r=kg-r=k; -raz=0
k sing, =kysind; =k; siné;

The law of reflection: 0, =0,

The law of refraction: :___1:ﬂ
(Snell’s law) sng k. v, n,

Common properties of waves: These equations are

obtained from their generic form.
45

Boundary Conditions (ii)

( )ei(k,-r—a)t) +( )ei(kR-r—a)t) — ( )ei(kT-r—(ut)

We have taken care of the exponential factors—they cancel.
The boundary conditions become:

(i) 51(E0| +EOR)2 = gZ(EOT)z Normal D
(i) (By, +Byr), = (Byr), Normal B
(i) (Eq +Eqg)yy = (Eor)yy Tangentia E

. 1 - ~ 1 - .
(IV) _(BOI +BOR)x,y :_(BOT)x,y Tangentlal H
H Ho

where B (r,t) = S (RxE,)
Vv
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Parallel to the Plane of Incidence

Q: If the polarization of the incident wave is parallel to the
plane of incidence, are the reflected and transmitted
waves also polarized in this plane? Yes.

L""i_.-"l s I K,

Norma D (i) &(-E, SN, + E,rSiné,) = &,(~E,; SiN6;)
Tangentia E (i) (E,, cosé, + E,, coséy) = (E,; cosé,)
Normal B (ii) 0=0

Tengential H (iv ~E)=——(Ey)

272

a7

Parallel to the Plane of Incidence (ii)

_ cos6;
cos,

(iV) (Em _EOR):ﬂ(EOT) ﬂELVl

AL

a-f 2
= Ep ( ,B)EO' E, = (TIB)EOI Fresnel's equations

(iii) (Ey + Egr) = @(Egy)

How about the first boundary condition?
Does this condition contribute anything new?

&,9N6; (E.) £SNG v
T

() (B —Er)= 81$In gls'ne, 1LV,

48




Brewster’'s Angle

Brewster’'s Angle (Il)

- a-pf. If 1, = 11, f=n,/n and sin’ G, = B I(L+ S7)
EOR:(O(+,B)EOI coso v n
, Whereaz—eT and p=*411 = tanf,=-2
~ ~ Cos yIAY
Eor = (m)Em | i I-“:-
B L% .
When o =, there is no reflected wave. E,, =0 06 Llﬁ
Cos V, i
costy _ when 6, = 6, (caled Brewster's angle) a .
cosf, v, 2 u
: vV, sSiné; cosé,  u, SiNG, ) e - . (e
From Sndl'slav 2 =—"~1 = =2 Ay 4 (TR Hil
vV, sing, cosf, w, SN6G; 0z =
2 G2 _p2 S
%s.nzea =% and i@, = (ﬁ)zsin"‘é?B = sin’f, S - '[j > i e
M5 Sin“ 6, v, (n/n) =p %
Transmission and Reflection Perpendicular to the Plane of Incidence
1, z(S-i) zlvlglEgl cosé, | -y Q: If the polarization of the incident wave is perpendicular
2 R=-R=( )? to the plane of incidence, are the reflected and transmitted
| =1Vg EZ, coS6, = (O‘_ﬂ)2| o axh waves also polarized in this plane? Yes.
R 2 1%1-0R R 0{+,B | T =I_T_ 2 )
1 2 =) (a+ /3)
I = §V282E§T cosé = aﬂ(m)z L, I n ") K’
r E
o
B kS B
E E”
-
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See Problem 9.16 5




9.4 Absorption and Dispersion
9.4.1 Electromagnetic Waves in Conductors

When wave propagates through vacuum or insulating
materials such as glass or teflon, assuming no free charge
and no free current is reasonable.

But in conductive media such as metal or plasma, the free
charge and free current are generally not zero.
The free current is proportional to the electric field: Ohm’s law

J; =0E
Maxwell’'s equation for linear media assume the form

_ P oB

V-E VxE+—=0
ot

&

V-B=0 VxB—,ug%Ez,uaE

53

Electromagnetic Waves in Conductors (Il)

0
The continuity equation for free charge: % =-V-J,
. conductivity
Jf =okE 0
—> %z—a(v E)——o-ﬁz—gpf
p; =éV-E € ¢

t
For a homogeneous linear medium: 2 (t) =€ " p;(0)

where 7 = £
Classification of conductors: e
superconductor o =, 7=0 What's the difference?
perfect conductoro =, 7=0 See Prob. 7.42
good conductor 7 << z' ~10"°s for copper 777777
poor conductor 7 >>w Erc ~10"s collision timeé54

Electromagnetic Waves in Conductors (lll)
Omitting Transient Effect

Omit the transient behavior.
Assume no charges accumulation: 25 =0

V-E=0 VxE+a—B:O
ot

V-B=0 VXB:,L[S(Z—?+,L10'E

—> Vx(VxE+%3):V><(V><E)+M

V x(VxE) =V(@\Q)—VZE =-V°E
=0

o(V xB) e 0°E 4 1
ot ot ot
O°F OF 0°B oB . .
V?E = ue +uoc—, V°B=uc + uo— (likewise) ss
HE—7 HHO— He—T U ( )

Electromagnetic Waves in Conductors (1V)
Complex Wave Number
These equations still admit plane-wave solutions,

O°E OE i
2R = _ R - Al (kz—ol
V°E = ue pe + uoc - {E(Z,t)—Eoe(kz t)

o°B oB B(z1) = B.g ko
VB = s — + pio— (1) =Bee
Moo THO
Note this time the " wave number" k is complex:
k? = pew® +iuow

k=aH| 1+ (Z)2+1
2 EW

k=k+ix, where - -

K=o, /8—’u 1+ (i)2 -1
2 EQ

- 56




The Real Parts of The Fields

k
E(Z t) E e KZ l(kz ot) —)B(Z,t) :_Eoe—xzel(kz ot)
«

Faraday's law
k=k+ix=Ke’
K =vk?+ &2 :a)\/g,u 1+(i)2 and ¢ = tan(x/ k)
) K. ;
B(zt)=—E = BgE*= E0
w

S,—5.=¢ and B_K_ eu /1+(i)2
E, o EQ@
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_________________________________________

9.4.2 Reflection at a Conducting Surface
& - &,E =0, E/-E)=0
B -B, =0 iBf —iB’Z’ =K, xn
tH H
Where ¢; is the free surface charge, K; is the free surface
current, and n is a unit vector perpendicular to the surface,
pointing from medium (2) into medium (1).

Normal
incident

(1) nonconducting  ®

- (2) conductor
linear medium Ex '
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Reflection at a Conducting Surface (I1)
Incident wave:

E (Z t) EO l(klz “’t)ﬁ, ﬁl (Z,t) :Vlémei(klzwt)y
1

Reflected wave:
E (Z t) e ei(fklzfa)t)" ﬁ t)=— 1= i(—kz-wt) 2
r(Z1) = Epr x, Be(zt)= VEORe Yy

1
Transmitted wave:

E(zt) = E, e el g, B(zt)_ k EOT e gl
Normal components of the fields

glEll_gZEZL:Gf =0 :O(EiL :0)
Bll_B;_ =0 f ? 59

Reflection at a Conducting Surface (I11)

Tangential components of the fields at z=0:

I n_ ~ ~ ~
E, -E; =0 Eoi + Eor = Eor

1., 1., A 1 - ~ kK, =

—B, —B, =K. xn = - —_2 =K
1 1 1, 2 f ,U1V1(EOI Eor) 1o Eor f
withK, =0, why? K, «c E" =0

- Eor (1 )E0|
Eo + Eor = Egr —> +'B

(Eo — Eor) :IBEOT' where § = 4% iz2 Eor (—)EO'

Ha @ 1+ 5
For a perfect conductor (6= ), k=0 ¥ E=-E, and Ej

That's why excellent conductors make good mirrors.

=0
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9.4.3 The Frequency Dependence of Permittivity

When the speed of a wave depends on its frequency, the
supporting medium is called dispersive.

The Group Velocity and Phase Velocity

When two waves of slightly different frequencies are
superposed, the resulting disturbance varies periodically in
amplitude.
Asn((k, +Ak)z— (@, + Aw)t) + Asn((k, — AK) z— (m, — Aw)t)
= AIn((k,z— apt) + (Akz— Aat)) + AIn((k,z— apt) — (Akz— Aat))
=2Acoq (Akz—Aat)]Sn[(k,z—ayt)]

Phase velocity v, =%

. Group velocity v, :%:%
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Interference in Time: Beats
When two waves of slightly different frequencies are
superposed, the resulting disturbance varies periodically in
amplitudey, _ v v, = Asin(27,t) + Asin(f 1)
f—f, . f+f
t]sin[2z(--—3)t
> tsin[ 5 )

Beat frequency (|f1-f2]): frequency of the amplitude
envelope " b -

= 2Acog27(
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Simplified Model for the Frequency Dependence of
Permittivity in Nonconductors

e ciron
. J' .
The electrons in a nonconductor are | kv
bound to specific molecules. ﬂ__;.'.,,: A
i
L

Y
...'i
H

- TITT—a

The simplified binding force: Fyj g = —KgyingX = —Ma? X

Is this model oversimplified to you?

The damping force on the electron: F, . = —my%

The driving force on the electron: F; ;.. = gE = gE, cos(«wt)

d?x

Newton's law: m? = Ftot = I:binding + I:damping + I:driving o




Permittivity in Nonconductors
The equation of motion

%+ m;/(;—+ M. X = qE, cos(awt)

d?x dx
Resm—— +my — + mo X = gE,e
{ preail o QE, }

Let the system oscillates at the driving frequency @
o o g/m
X=X,e

2 2
Wy, —o° —lyw

ot

, whereX, =

The dipole moment is the real part of p = gx(t)
2
b — q_ 1 Eoefia)t

2 .
m wy — o —iyew .

Permittivity in Nonconductors (ll)

N molecules per unit volume; each molecule contains f;
electrons with frequency «, and damping .
The polarization P is given by the real part of:

- Nag? f. - o~
P (z RPN ]EzgoZeE

m | T o] —o" —ly,0
- qu fj R
7= z —— <« the complex susceptibility
EM\ T o —o" -ly,0

the complex permittivity e=¢,(1+ 7,)
the complex dielectric constant

Ng?

Yo
&M ja)jz—a)z—i}/ja)

&=1+7z.,) =1+
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Waves in a Dispersive medium
The wave equation for a given frequency reads

_OE . Ng?* f,
V’E = ,ug? =1+ ) =&+ - (Z L

jﬁ—#—%w
K=\éuo=k+ix  E(zt)=Ee "€

| =(S)=1,6%% =2k (absorption coefficient)

For gases, the second term of & is small

- 2 f.
k=2 \/T;Q(Hlér)zﬁ 14+ >

c ' %~ 2 c 2me, | T o) —o” -y,
The binomial expansion

67

Anomalous Dispersion

The index of refraction:

Ck qu f (a)Z _ 0)2) I_.'. -_II
n=—=1+ [z 21 2{2 — . |

1) 2me, | T (0] —0°) +yjo

qua)z f7/2 e 1 3 g
a=2k= [z — | - I'.

(0] —0°) +yjo

In the immediate neighborhood of a resonance, the index of
refraction drops sharply. € called anomalous dispersion.

Faster Than Light (FTL):
Can we find cases where the waves propagate at a speed
faster than light? Superluminal effect.
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9.5 Guided Waves
9.4.1 Wave Guides

Can the electromagnetic waves propagate in a hollow metal
pipe? Yes, wave guide.

Waveguides generally made of good f/ .
conductor, so that E=0 and B=0 inside _
the material. , /

The boundary conditions at the inner wall
are: E’=0 and B*=0 ...

The generic form of the monochromatic waves:
E(x,y,2.t) = Bo(x, y)& @™ = (E &+ E,§ + E,z)e @

B(x, Y, 2,t) = By(x, y)é® ™ = (Bi+ B §+B,2)d®™
The confined waves are not (in general) transverse. 6

General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell's

equations: B
V-E=0 VxE+==0 Why p, =0and J, =0?

V-B=0 Vsziza—E Wherev=i
v ot

Jon

We obtain
@ %él = aab;" =iwB,, (iv) % = aagy" = —i—‘; -
(ii) aa_l;z —ikEy = ioBy, (V) aaiz —ikBy = —i—‘;’Ex,
(iii) ikEx — aaiz =iwBy, (vi) ikByx— % — -ic—‘;Ey.
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TE, TM, and TEM Waves

Determining the longitudinal components E, and B,, we could
quickly calculate all the others.

o 5= (o)
@ 8= g (Vg ~o %)
@ 8= (V- a )

We obtain

0* o*
{ ++V2—k2}EZ=0 If E,=0 = TE (transverse dectric) waves,

oy :
2 5 o If B,=0 = TM (transverse magnetic) waves,
|:6X2+6y2+f/)2—k2:||31=0 If E,=0andB, =0 = TEM waves.

71

No TEM Waves in a Hollow Wave Guide
Proof:

0
If E,=0, Gauss's law says %E LS

ox oy 0°E, O°E,

E oE = Ve + Y =0
If B,=0, Faraday’s law says ———*=0

ox oy

The boundary condition on E requires that the surface be an
equal-potential.

Laplace’s equation admits no local maxima or minima.

=> the potential is constant throughout. E,=0 — no wave at all.

A hollow wave guide cannot support the TEM wave.

Can a metal wire support the TEM wave? Yes.
72




A Diagram of the Optical Setup

Bcanning opdical
dilay Eno
r o Famiosacand laser
Flbm = '
Couplar & | A
Y Fai

i
Ing Cupier 1'1—-! Fibirm
L~

colpher
o (.-} _.I_‘l,.-'
Wrvegulde THE rsteiver
e———
Wonila siage Movabla staga

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave

guiding”, Nature, vol.432, No. 18, p.376, 2004. 73

9.5.2 TE Waves in a Rectangular Wave Guide
E, =0, and B,(X, y) = X(X)Y(y) < separation of variables

10*X 10 & [, ”

— +——+(—-k*=0
X ox* Y oy (v2 )

1 6°X 10%Y
Xae &Mk

X

2
with 2 = k2 + k2 + K
V

X(x) = Asink x+ Bcosk,x
Y(y)=Csink y+Dcosk y
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TE Waves in a Rectangular Wave Guide (I1)

E, o« 8;;2 oc Ccosk, y—Dsink,y
E(@y=0=0=C=0
Ex(@y=b)=03sinkyb=o,ky=”F”(n=o,n,z,.._)

E, o aaBZ oc Acosk x—Bsink,x
X
E,(@x=0=0=A=0

. mve
E,(@x=a)=0=snka=0,k, =?(m=0,],2,...)

B, (X, y) = B, cos(mzx/a)cos(nzy/b) < the TE,, mode

k=(@/v)* = 7*(m/a)’ +(n/b)’
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TE Waves in a Rectangular Wave Guide (lIl)
B, (X, y) = B, cos(mzx/a)cos(nzy/b)
Invacuum, & = &, and u = 14, V=_C. the cutoff frequency

k= i«/wz —w? , where 0>, =c’z’[(m/a)® +(n/b)?]
c
If o < w,,,, the wave number isimaginary.

The lowest cutoff frequency of TE,, mode is: @, =C7/a

The wave velocities are:

(0]

V. =—=—
"k 1- 0 /o

v, :?:I_i): cl-w?, /ow® <c group velocity

>C phasevelocity

76




Why the Phase Velocity Greater Than : .
y y ¢ The Field Profiles: Examples
The Speed of Light
v ° ¢ phase velocity
"k J1-@f, 0
d .
Vo =g = cyl-@?, /@’ <c group velocity
2
Vv, =C
L 1]
A—
"‘\__'-':.__, "-,_\ S 'L."l- }%ﬁ:ﬂ}:& o
""i,'f_..- Y s 1"-_ x"‘-. H:ﬁ“n
\\': | '\-__\_. 2 '-\.1. ."'-\....""'\-\.___
o - 1N Y & % AN ——
‘i_, \ L% ~. g
A b ) LY % b
== ! PR\
ko
Wave fronis 77 78
9.5.3 The Coaxial Transmission Line The Coaxial Transmission Line (I1)
A hollow wave guide cannot support the TEM wave, The problem is reduced to two dimensions.
but a coaxial transmission line can. J _ Electrostatic: the infinite line charge;
' Magnetostatic: an infinite straight current.
0E, OE 9B, 0B E,(s,¢) A By (s,¢) A(ﬁ
. oLy S . 90y x=__a) o\ =% o\ =
L PR _NZ’ PR \%Z‘EZ’ S s
. . : B, . iw Taking the real part:
(i) %—1kEy =iwB;, V) %y{—szy = —C—ZEX, . o )
Aco —ot) ~
j E(s,¢,zt)=————5
(iii) ikE, _ﬂ?{: iwBy, (vi) ikBy —&; -2E,. (8.¢.21) s
ox ors e Acos(kz— at)
B(s,¢,zt) =———— 2@
. cs
V-E=0and VxE=0 E =-V¢. electrostatic @ (b) TE,,
V:B=0and VxB=0 B = -V ¢, magnetostatic 70 8




Homework of Chap.9 (Il)

Prob. 16, 18, 19, 29, 30, 35, 38
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