Chapter 10: Potentials and Fields

10.1 The Potential Formulation
10.1.1 Scalar and Vector Potentials

In the electrostatics and magnetostatics,
(i) $\nabla \cdot \mathbf{E}=\frac{1}{\varepsilon_{0}} \rho$
(iii) $\nabla \times \mathbf{E}=0$
(ii) $\nabla \cdot \mathbf{B}=0$
(iV) $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}$
the electric field and magnetic field can be expressed using potential:

$$
\begin{array}{ll}
\mathbf{E}=-\nabla V & -\nabla^{2} V=\frac{1}{\varepsilon_{0}} \rho \\
\mathbf{B}=\nabla \times \mathbf{A} & \nabla \times(\nabla \times A)=\mu_{0} \mathbf{J}
\end{array}
$$

$\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{J} \Rightarrow-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{J}$

Scalar and Vector Potentials

In the electrodynamics,
(i) $\nabla \cdot \mathbf{E}=\frac{1}{\varepsilon_{0}} \rho$
(iii) $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
(ii) $\nabla \cdot \mathbf{B}=0$
(iV) $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$

How do we express the fields in terms of scalar and vector potentials?
\mathbf{B} remains divergence, so we can still write, $\quad \mathbf{B}=\nabla \times \mathbf{A}$
Putting this into Faraday's law (iii) yields,
$\nabla \times \mathbf{E}=-\frac{\partial}{\partial t}(\nabla \times \mathbf{A})=\nabla \times\left(-\frac{\partial \mathbf{A}}{\partial t}\right) \Rightarrow \nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0$

$$
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\nabla V
$$

Example 10.1

Find the charge and current distributions that would give rise to the potentials.

$$
V=0, \mathbf{A}=\left\{\begin{array}{cc}
\frac{\mu_{0} k}{4 c}(c t-|x|)^{2} \hat{\mathbf{z}} & \text { for }|x|<c t \\
0 & \text { for }|x|>c t
\end{array}\right.
$$

Where k is a constant, and c is the speed of light.
Solution: $\rho=-\varepsilon_{0} \frac{\partial}{\partial t}(\nabla \cdot \mathbf{A})$

$$
\mathbf{J}=-\frac{1}{\mu_{0}}\left(\nabla^{2} \mathbf{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)+\frac{1}{\mu_{0}} \nabla(\nabla \cdot \mathbf{A})
$$

$$
\begin{cases}\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}=0 \\ \nabla^{2} \mathbf{A}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) A_{z} \hat{\mathbf{z}}=\frac{\mu_{0} k}{4 c} \hat{\mathbf{z}} & \rho=0 \\ -\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \varepsilon_{0} \frac{\mu_{0} k}{4 c} c^{2} \hat{\mathbf{z}}=\frac{\mu_{0} k}{4 c} \hat{\mathbf{z}} & \end{cases}
$$

Example 10.1 (ii)

Since the volume charge density and current density are both zero, where are the electric and magnetic fields from?

$$
\rho=0 \text { and } \mathbf{J}=0
$$

They might originate from surface charge or surface current.

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial}{\partial t}(\nabla \cdot \mathbf{A})=-\frac{\mu_{0} k}{2}(c t-|x|) \hat{\mathbf{z}} \\
& \mathbf{B}=\nabla \times \mathbf{A}=-\frac{\mu_{0} k}{4 c} \frac{\partial}{\partial x}(c t-|x|)^{2} \hat{\mathbf{y}}= \pm \frac{\mu_{0} k}{2 c}(c t-|x|) \hat{\mathbf{y}}
\end{aligned}
$$

There is a surface current \boldsymbol{K} in the $y z$ plane. $\mathbf{K}=\hat{\mathbf{n}} \times\left(\mathbf{H}^{+}-\mathbf{H}^{-}\right)$

> How do we know?

$$
=\hat{\mathbf{n}} \times \frac{1}{\mu_{0}} \frac{\mu_{0} k}{c} c t \hat{\mathbf{y}}=k t \hat{\mathbf{z}}
$$

10.1.2 Gauge Transformations

We have succeeded in reducing six components (E and B) down to four (V and \mathbf{A}). However, V and \mathbf{A} are not uniquely determined.
We are free to impose extra conditions on V and \mathbf{A}, as long as nothing happens to \mathbf{E} and \mathbf{B}.

Suppose we have two sets of potential (V, \mathbf{A}) and $\left(V^{\prime}, \mathbf{A}^{\prime}\right)$, which correspond to the same electric and magnetic fields.

$$
\begin{aligned}
& \mathbf{A}^{\prime}=\mathbf{A}+\boldsymbol{\alpha} \text { and } V^{\prime}=V+\beta \\
& \mathbf{B}=\nabla \times \mathbf{A}=\nabla \times \mathbf{A}^{\prime} \Rightarrow \nabla \times \boldsymbol{\alpha}=0 \\
& \mathbf{E}=-\nabla V^{\prime}-\frac{\partial \mathbf{A}^{\prime}}{\partial t}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}-\left(\nabla \beta+\frac{\partial \boldsymbol{\alpha}}{\partial t}\right) \Rightarrow \boldsymbol{\alpha}=\nabla \lambda \\
& \Rightarrow \nabla\left(\beta+\frac{\partial \lambda}{\partial t}\right)=0
\end{aligned} \quad \Rightarrow\left(\beta+\frac{\partial \lambda}{\partial t}\right)=k(t)
$$

Gauge Transformations

$$
\begin{aligned}
& \boldsymbol{\alpha}=\nabla \lambda=\nabla \lambda^{\prime} \\
& \beta=-\frac{\partial \lambda}{\partial t}+k(t)=-\frac{\partial \lambda^{\prime}}{\partial t}
\end{aligned} \quad \Rightarrow\left\{\begin{array}{l}
\mathbf{A}^{\prime}=\mathbf{A}+\nabla \lambda \\
V^{\prime}=V-\frac{\partial \lambda}{\partial t}
\end{array}\right.
$$

Conclusion: For any scalar function λ, we can with impunity add $\nabla \lambda$ to \mathbf{A}, provided we simultaneously subtract $\partial \lambda / \partial t$ to V.

Such changes in V and A do not affect \mathbf{E} and \mathbf{B}, and are called gauge transformation.

We have the freedom to choose V and \mathbf{A} provided \mathbf{E} and \mathbf{B} do not affect --- gauge freedom.

10.1.3 Coulomb Gauge and Lorentz Gauge

 There are many famous gauges in the literature. We will show the two most popular ones.$$
\begin{aligned}
& \nabla^{2} V+\frac{\partial}{\partial t}(\nabla \cdot \mathbf{A})=-\frac{1}{\varepsilon_{0}} \rho \\
& \left(\nabla^{2} \mathbf{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla\left(\nabla \cdot \mathbf{A}+\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}\right)=-\mu_{0} \mathbf{J}
\end{aligned}
$$

The Coulomb Gauge: $\quad \nabla \cdot \mathbf{A}=0$

$$
\begin{aligned}
& \nabla^{2} V=-\frac{1}{\varepsilon_{0}} \rho \text { (Poisson's equation) } \\
& V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t\right)}{\mathrm{r}} d \tau^{\prime} \text { (setting } V=0 \text { at infinity) }
\end{aligned}
$$

V instantaneously reflects all changes in ρ. Really?
$\mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}$ unlike electrostatic case.

The Coulomb Gauge

Advantage: the scalar potential is particularly simple to calculate;

$$
\begin{aligned}
& \nabla^{2} V=-\frac{1}{\varepsilon_{0}} \rho \text { (Poisson's equation) } \\
& V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t\right)}{r} d \tau^{\prime} \text { (setting } V=0 \text { at infinity) }
\end{aligned}
$$

Disadvantage: the vector potential is very difficult to calculate.

$$
\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}+\left(\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}+\nabla\left(\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}\right)\right)
$$

The coulomb gauge is suitable for the static case.
The Lorentz Gauge

$$
\begin{aligned}
& \nabla^{2} V+\frac{\partial}{\partial t}(\nabla \cdot \mathbf{A})=-\frac{1}{\varepsilon_{0}} \rho \\
& \left(\nabla^{2} \mathbf{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla\left(\nabla \cdot \mathbf{A}+\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}\right)=-\mu_{0} \mathbf{J}
\end{aligned}
$$

The Lorentz Gauge:
$\nabla \cdot \mathbf{A}+\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}=0$

$$
\begin{aligned}
& \nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial t^{2}}=-\frac{1}{\varepsilon_{0}} \rho \\
& \nabla^{2} \mathbf{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \mathbf{J}
\end{aligned}
$$

$\nabla^{2}-\mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \equiv \square^{2}$
\square^{2} : the d'Alembertian

$$
\begin{aligned}
& \square^{2} V=-\frac{1}{\varepsilon_{0}} \rho \\
& \square^{2} \mathbf{A}=-\mu_{0} \mathbf{J}
\end{aligned}
$$

The Lorentz Gauge

Advantage: It treat V and \mathbf{A} on an equal footing and is particularly nice in the context of special relativity. It can be regarded as four-dimensional versions of Poisson's equation.
V and A satisfy the inhomogeneous wave equations, with a "source" term on the right.

$$
\begin{aligned}
& \square^{2} V=-\frac{1}{\varepsilon_{0}} \rho \\
& \square^{2} \mathbf{A}=-\mu_{0} \mathbf{J}
\end{aligned}
$$

Disadvantage: ...

We will use the Lorentz gauge exclusively.

10.2 Continuous Distributions 10.2.1 Retarded Potentials

Four copies of Poisson's equation

$$
\begin{aligned}
& V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\mathbf{r}} d \tau^{\prime} \\
& \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\mathbf{r}} d \tau^{\prime}
\end{aligned}
$$

Retarded Potentials
In the nonstatic case, it is not the status of the source right now that matters, but rather its condition at some earlier time t_{r} when the "message" left.

$$
t_{r} \equiv t-\frac{\mathrm{r}}{c}(\text { called the retarded time })
$$

Retarded potentials:

$$
\begin{array}{ll}
V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} & \begin{array}{l}
\text { Argument: The light we see now } \\
\text { left each star at the retarded time } \\
\text { corresponding to that start's } \\
\text { distance from the earth. }
\end{array} \\
\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} & \begin{array}{l}
\text { dimen }
\end{array}
\end{array}
$$

This heuristic argument sounds reasonable, but is it correct? Yes, we will prove it soon.

Retarded Potentials

Satisfy the Lorentz Gauge Condition

Show that the retarded scalar potentials satisfy the Lorentz

 gauge condition.$$
V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \quad \nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial t^{2}}=-\frac{1}{\varepsilon_{0}} \rho
$$

Sol: $\nabla V=\frac{1}{4 \pi \varepsilon_{0}} \int \nabla\left(\frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}}\right) d \tau^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\mathbf{r}(\nabla \rho)-\rho(\nabla \mathbf{r})}{\mathbf{r}^{2}} d \tau^{\prime}$
Using quotient rule: $\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}$

$$
\nabla \rho=\nabla \rho\left(\mathbf{r}^{\prime}, t_{r}\right)=\frac{\partial \rho}{\partial t_{r}} \nabla t_{r}=\dot{\rho} \frac{-1}{c} \nabla r \quad \nabla r=\mathbf{r}
$$

$$
\nabla V=\frac{-1}{4 \pi \varepsilon_{0}} \int\left[\frac{\rho \mathbf{r}}{c \mathbf{r}}+\frac{\rho \mathbf{r}}{\mathbf{r}^{2}}\right] d \tau^{\prime}
$$

Retarded Potentials

Satisfy the Lorentz Gauge Condition (ii)
$\nabla \cdot \nabla V=\nabla^{2} V=\frac{-1}{4 \pi \varepsilon_{0}} \int \nabla \cdot\left[\frac{\dot{\rho} \mathbf{r}}{c \mathbf{r}}+\frac{\rho \mathbf{r}}{\mathrm{r}^{2}}\right] d \tau^{\prime}$
$\nabla \cdot\left[\frac{\dot{\rho} \mathbf{r}}{c \mathbf{r}}+\frac{\rho \mathbf{r}}{\mathrm{r}^{2}}\right]=\frac{1}{c} \nabla \cdot\left(\dot{\rho} \frac{\mathbf{r}}{\mathrm{r}}\right)+\nabla \cdot\left(\rho \frac{\mathbf{r}}{\mathrm{r}^{2}}\right)$

$$
=\frac{1}{c}\left[\frac{\mathbf{r}}{\mathbf{r}} \cdot \nabla \dot{\rho}+\dot{\rho} \nabla \cdot \frac{\mathbf{r}}{\mathrm{r}}\right]+\left[\frac{\mathbf{r}}{\mathbf{r}^{2}} \cdot \nabla \rho+\rho \nabla \cdot \frac{\mathbf{r}}{\mathrm{r}^{2}}\right]
$$

$\nabla \dot{\rho}=\nabla \dot{\rho}\left(\mathbf{r}^{\prime}, t_{r}\right)=\frac{\partial \dot{\rho}}{\partial t_{r}} \nabla t_{r}=\ddot{\rho} \frac{-1}{c} \nabla r=-\frac{\ddot{\rho}}{c} \boldsymbol{r} \quad$ and $\quad \nabla \rho=\frac{-\dot{\rho}}{c} r$

$$
\nabla \cdot \frac{\mathrm{r}}{\mathrm{r}}=\frac{1}{r^{2}} \text { and } \nabla \cdot \frac{\mathrm{r}}{\mathrm{r}^{2}}=4 \pi \delta^{3}(\mathrm{r}) \quad \nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial t^{2}}=-\frac{1}{\varepsilon_{0}} \rho
$$

$$
\nabla \cdot\left[\frac{\dot{\rho} \mathrm{r}}{c \mathrm{r}}+\frac{\rho \mathrm{r}}{\mathrm{r}^{2}}\right]=\frac{1}{c}\left[-\frac{\ddot{\rho}}{c \mathrm{r}}+\frac{\dot{\rho}}{\mathrm{r}^{2}}\right]+\left[-\frac{1}{\mathrm{r}^{2}} \frac{\dot{\rho}}{c}+4 \pi \rho \delta^{3}(\mathrm{r})\right]
$$

$$
=-\frac{1}{c^{2}} \ddot{\rho}+4 \pi \rho \delta^{3}(\mathbf{r})
$$

Retarded Potentials Satisfy the Lorentz Gauge

Condition
Show that the retarded vector potentials satisfy the Lorentz gauge condition.

$$
\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \quad \nabla^{2} \mathbf{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \mathbf{J}
$$

Sol:
$\nabla \cdot\left(\frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathbf{r}}\right)=\frac{\mathbf{r}(\nabla \cdot \mathbf{J})-\mathbf{J} \cdot(\nabla \mathbf{r})}{\mathbf{r}^{2}} \quad t_{r} \equiv t-\frac{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}{c}$
Using quotient rule: $\nabla \cdot\left(\frac{\mathbf{A}}{g}\right)=\frac{g(\nabla \cdot \mathbf{A})-\mathbf{A} \cdot(\nabla g)}{g^{2}}$
See Prob. 10.8...

The Principle of Causality

This proof applies equally well to the advanced potentials.
Advanced potentials:
$V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{a}\right)}{\mathrm{r}} d \tau^{\prime} \quad \nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial t^{2}}=-\frac{1}{\varepsilon_{0}} \rho$
$\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{a}\right)}{\mathrm{r}} d \tau^{\prime} \quad \nabla^{2} \mathbf{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \mathbf{J}$
$t_{a} \equiv t+\frac{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}{c}$
The advanced potentials violate the most sacred tenet in all physics: the principle of causality.

No direct physical significance.

Example 10.2

An infinite straight wire carries the current $I(t)= \begin{cases}0 & \text { for } t \leq 0 \\ I_{0} & \text { for } t>0\end{cases}$ Find the resulting electric and magnetic fields.

Sol: The wire is electrically neutral, so the retarded scalar potential is zero.

$$
\mathbf{A}(\mathbf{r}, t)=\mathbf{A}(s, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}=\frac{\mu_{0}}{4 \pi} \hat{\mathbf{z}} \int_{-\infty}^{\infty} \frac{I\left(t_{r}\right)}{\mathrm{r}} d z
$$

For $t<s / c$, the "news" has not yet reached P , and the potential is zero.
For $t>s / c$, only the segment $|z| \leq \sqrt{(c t)^{2}-s^{2}} \quad$ contributes.

$$
\begin{aligned}
\mathbf{A}(s, t) & =\left(\frac{\mu_{0} I_{0}}{4 \pi} \hat{\mathbf{z}}\right) \int_{-\sqrt{(c t)^{2}-s^{2}}}^{\sqrt{(c t)^{2}-s^{2}}} \frac{1}{\sqrt{s^{2}+z^{2}}} d z \\
& =\left.\left(\frac{\mu_{0} I_{0}}{2 \pi} \hat{\mathbf{z}}\right) \ln \left(\sqrt{s^{2}+z^{2}}+z\right)\right|_{0} ^{\sqrt{(c t)^{2}-s^{2}}} \\
& =\left(\frac{\mu_{0} I_{0}}{2 \pi} \hat{\mathbf{z}}\right) \ln \left(\frac{c t+\sqrt{(c t)^{2}-s^{2}}}{s}\right)
\end{aligned}
$$

$\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}=-\frac{\mu_{0} I_{0} c}{2 \pi \sqrt{(c t)^{2}-s^{2}}} \hat{\mathbf{z}}$
$\mathbf{B}=\nabla \times \mathbf{A}=-\frac{\partial A_{z}}{\partial s} \hat{\boldsymbol{\varphi}}=\frac{\mu_{0} I_{0}}{2 \pi s} \frac{c t}{\sqrt{(c t)^{2}-s^{2}}} \hat{\boldsymbol{\varphi}}$

Retarded Fields?

Can we express the electric field and magnetic field using the concept of the retarded potentials? No.

Retarded potentials:
Retarded fields: (wrong)
$V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}$
$\mathbf{E}(\mathbf{r}, t) \neq \frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathbf{r}^{2}} \boldsymbol{r} d \tau^{\prime}$
$\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathbf{r}} d \tau^{\prime}$
$\mathbf{B}(\mathbf{r}, t) \neq \frac{1}{4 \pi \varepsilon_{0}} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right) \times \boldsymbol{r}}{\mathbf{r}^{2}} d \tau^{\prime}$
How to correct this problem?
Jefimenko's equations.

Jefimenko's Equations (ii)

Retarded potentials:
$V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}$ and $\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}$
$\mathbf{B}=\nabla \times \mathbf{A}=\frac{\mu_{0}}{4 \pi} \int \nabla \times \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}=\frac{\mu_{0}}{4 \pi} \int\left[\frac{1}{\mathrm{r}} \nabla \times \mathbf{J}-\mathbf{J} \times \nabla \frac{1}{\mathrm{r}}\right] d \tau^{\prime}$

$$
\nabla \times \mathbf{J}=\frac{1}{c} \mathbf{J} \times \mathbf{r} \quad \text { and } \quad \nabla\left(\frac{1}{r}\right)=-\frac{r}{r^{2}}
$$

$\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int\left[\frac{\mathbf{J}}{\mathrm{r}^{2}}+\frac{1}{c \mathbf{r}} \dot{\mathbf{J}}\right] \times \mathbf{r} d \tau^{\prime} \quad$ The time-dependent generalization of the Biot-Savart law.

These two equations are of limited utility, but they provide a satisfying sense of closure to the theory.

10.2.2 Jefimenko's Equations

Retarded potentials:

$$
\begin{aligned}
& V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime} \text { and } \mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime} \\
& \mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}\left\{\begin{array}{l}
-\nabla V=\frac{1}{4 \pi \varepsilon_{0}} \int\left[\frac{\dot{\rho} \hat{\mathbf{r}}}{c \mathbf{r}}+\frac{\rho \hat{\mathbf{r}}}{\mathrm{r}^{2}}\right] d \tau^{\prime} \\
-\frac{\partial \mathbf{A}}{\partial t}=-\frac{\partial}{\partial t_{r}}\left(\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}\right) \frac{\partial t_{r}}{\partial t}=-\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}}{\mathrm{r}} d \tau^{\prime} \\
\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int\left[\frac{\dot{\rho} \mathbf{r}}{c \mathbf{r}}+\frac{\rho \mathbf{r}}{\mathbf{r}^{2}}\right] d \tau^{\prime}-\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}}{\mathrm{r}} d \tau^{\prime} \\
=\frac{1}{4 \pi \varepsilon_{0}} \int\left[\frac{\rho \hat{\mathbf{r}}}{\mathrm{r}^{2}}+\frac{\dot{\rho} \mathbf{r}}{c \mathbf{r}}-\frac{\dot{\mathbf{J}}}{c^{2} \mathbf{r}}\right] d \tau^{\prime}
\end{array}\right.
\end{aligned}
$$

The time-dependent generalization of Coulomb's law. ${ }^{22}$

10.3 Point Charges

10.3.1 Lienard-Wiechert Potentials

What are the retarded potentials of a moving point charge q ?
Consider a point charge q that is moving on a specified trajectory
$\mathbf{W}(t) \equiv$ position of q at time t.
The retarded time is: $\quad t_{r} \equiv t-\frac{\left|\mathbf{r}-\mathbf{w}\left(t_{r}\right)\right|}{c}$
$\mathbf{W}\left(t_{r}\right)$ the retarded position of the charge.
The separation vector r is the vector from the retarded position to the field point \mathbf{r}

$$
\mathbf{r}=\mathbf{r}-\mathbf{W}\left(t_{r}\right)
$$

Communication

Is it possible that more than one point on the trajectory are "in communication" with \mathbf{r} at any particular time t ?
No, one and only one will contribute.
Suppose there are two such points, with retarded time t_{1} and t_{2} :

$$
\mathrm{r}_{1}=c\left(t-t_{1}\right) \text { and } \mathbf{r}_{2}=c\left(t-t_{2}\right) \Longleftrightarrow \mathrm{r}_{1}-\mathbf{r}_{2}=c\left(t_{1}-t_{2}\right)
$$

This means the average velocity of the particle in the direction of \mathbf{r} would have to be $c . \leftarrow$ violate special relativity.

Only one retarded point contributes to the potentials at any given moment.

Total Charge

$$
V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\left|\mathbf{r}-\mathbf{w}\left(t_{r}\right)\right|} d \tau^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\left|\mathbf{r}-\mathbf{w}\left(t_{r}\right)\right|} \underbrace{\rho\left(\mathbf{r}^{\prime}, t_{r}\right) d \tau^{\prime}}_{\neq q}
$$

The retardation obliges us to evaluate ρ at different times for different parts of the configuration.

The source in motion lead to a distorted picture of the total charge.

$$
\int \rho\left(\mathbf{r}^{\prime}, t_{r}\right) d \tau^{\prime}=\frac{q}{1-\mathbf{r} \cdot \mathbf{v} / c}
$$

No matter how small the charge is.

To be proved.

Total Charge: a Geometrical Effect

A train coming towards you looks a little longer than it really is, because the light you receive from the caboose left earlier than the light you receive simultaneously from the engine.

$$
\frac{L^{\prime}}{c}=\frac{L^{\prime}-L}{v} \Rightarrow L^{\prime}=\frac{L}{1-v / c}
$$

$L^{\prime}=\frac{L}{1-v / c} \quad$ Approaching train appears longer.
$L^{\prime}=\frac{L}{1+v / c} \quad$ A train going away from you looks shorter.

Total Charge: a Geometrical Effect (ii)

In general, if the train's velocity makes an angle θ with your line of sight, the extra distance light from the caboose must cover is $L^{\prime} \cos \theta$.

$$
\frac{L^{\prime} \cos \theta}{c}=\frac{L^{\prime}-L}{v} \Rightarrow L^{\prime}=\frac{L}{1-v \cos \theta / c}
$$

This effect does not distort the dimensions perpendicular to the motion.

The apparent volume τ ' of the train is related to the actual volume τ by .

$$
\tau^{\prime}=\frac{\tau}{1-\mathbf{r} \cdot \mathbf{v} / c}
$$

Lienard-Wiechert Potentials

It follows that

$$
\begin{aligned}
V(\mathbf{r}, t) & =\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\mathbf{r}} d \tau^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(\mathbf{r}-\mathbf{r} \cdot \mathbf{v} / c)}, \\
\mathbf{A}(\mathbf{r}, t) & =\frac{\mu_{0}}{4 \pi} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right) v\left(t_{r}\right)}{\mathrm{r}} d \tau^{\prime}=\frac{\mu_{0}}{4 \pi} \frac{v\left(t_{r}\right)}{\mathrm{r}} \int \rho\left(\mathbf{r}^{\prime}, t_{r}\right) d \tau^{\prime} \\
& =\frac{\mu_{0}}{4 \pi} \frac{q \mathbf{v}}{(\mathbf{r}-\mathbf{r} \cdot \mathbf{v} / c)}=\frac{\mathbf{v}}{c^{2}} V(\mathbf{r}, t)
\end{aligned}
$$

$$
\text { where } \rho\left(\mathbf{r}^{\prime}, t_{r}\right)=q \delta\left(\mathbf{r}^{\prime}-\mathbf{r}, t_{r}\right)
$$

The famous Lienard-Wiechert potentials for a moving point charge.

Cont': $t_{r}=\frac{\left(c^{2} t-\mathbf{r} \cdot \mathbf{v}\right)-\sqrt{\left(\mathbf{r} \cdot \mathbf{v}-c^{2} t\right)^{2}-\left(c^{2}-v^{2}\right)\left(c^{2} t^{2}-r^{2}\right)}}{\left(c^{2}-v^{2}\right)}$
$r=c\left(t-t_{r}\right)$, and $\mathbf{r}=\frac{\mathbf{r}-\mathbf{v} t_{r}}{c\left(t-t_{r}\right)}$
$\mathbf{r}-\mathbf{r} \cdot \mathbf{v} / c=c\left(t-t_{r}\right)\left[1-\frac{\mathbf{v}}{c} \cdot \frac{\mathbf{r}-\mathbf{v} t_{r}}{c\left(t-t_{r}\right)}\right]=c\left(t-t_{r}\right)-\frac{\mathbf{v} \cdot \mathbf{r}}{c}-\frac{v^{2}}{c} t_{r}$
$=\frac{1}{c}\left[\left(c^{2} t-\mathbf{r} \cdot \mathbf{v}\right)-\left(c^{2}-v^{2}\right) t_{r}\right]$
$=\frac{1}{c} \sqrt{\left(\mathbf{r} \cdot \mathbf{v}-c^{2} t\right)^{2}-\left(c^{2}-v^{2}\right)\left(c^{2} t^{2}-r^{2}\right)}$
$\left\{\begin{array}{l}V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q c}{\sqrt{\left(\mathbf{r} \cdot \mathbf{v}-c^{2} t\right)^{2}-\left(c^{2}-v^{2}\right)\left(c^{2} t^{2}-r^{2}\right)}} \\ \mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \frac{q c \mathbf{v}}{\sqrt{\left(\mathbf{r} \cdot \mathbf{v}-c^{2} t\right)^{2}-\left(c^{2}-v^{2}\right)\left(c^{2} t^{2}-r^{2}\right)}}\end{array}\right.$

10.3.2 The Fields of a Moving Point Charge

 Using the Lienard-Wiechert potentials we can calculate the fields of a moving point charge.$V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(\mathbf{r}-\mathbf{r} \cdot \mathbf{v} / c)}$ and $\mathbf{A}(\mathbf{r}, t)=\frac{\mathbf{v}}{c^{2}} V(\mathbf{r}, t)$
Find: $\quad \mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t} \quad$ and $\quad \mathbf{B}=\nabla \times \mathbf{A}$
The separation vector: $\mathbf{r}=\mathbf{r}-\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{W}\left(t_{r}\right)$ and $\mathbf{v}=\dot{\mathbf{W}}\left(t_{r}\right)$
The retarded time $t_{r}:\left|\mathbf{r}-\mathbf{W}\left(t_{r}\right)\right|=c\left(t-t_{r}\right)$

Gradient of the Scalar Potential

$\# 1 \quad(\mathbf{r} \cdot \nabla) \mathbf{v}=\left(\mathbf{r}_{x} \frac{\partial}{\partial x}+\mathbf{r}_{y} \frac{\partial}{\partial y}+\mathbf{r}_{z} \frac{\partial}{\partial z}\right) \mathbf{v}$

$$
\begin{aligned}
& =\left(\mathbf{r}_{x} \frac{d \mathbf{v}}{d t_{r}} \frac{\partial t_{r}}{\partial x}+\mathbf{r}_{y} \frac{d \mathbf{v}}{d t_{r}} \frac{\partial t_{r}}{\partial y}+\mathbf{r}_{z} \frac{d \mathbf{v}}{d t_{r}} \frac{\partial t_{r}}{\partial z}\right) \\
& =\mathbf{a}\left(\mathbf{r} \cdot \nabla t_{r}\right)
\end{aligned}
$$

acceleration
\#2 $\quad(\mathbf{v} \cdot \nabla) \mathbf{r}=(\mathbf{v} \cdot \nabla) \mathbf{r}-(\mathbf{v} \cdot \nabla) \mathbf{W}\left(t_{r}\right)=-\left(v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z}\right) \mathbf{W}\left(t_{r}\right)$

$$
\begin{aligned}
& =\mathbf{v}-\left(v_{x} \frac{d \mathbf{W}}{d t_{r}} \frac{\partial t_{r}}{\partial x}+v_{y} \frac{d \mathbf{W}}{d t_{r}} \frac{\partial t_{r}}{\partial y}+v_{z} \frac{d \mathbf{W}}{d t_{r}} \frac{\partial t_{r}}{\partial z}\right) \\
& =\mathbf{v}\left(1-\left(\mathbf{v} \cdot \nabla t_{r}\right)\right)
\end{aligned}
$$

\#3 $\mathbf{r} \times(\nabla \times \mathbf{v})=\mathbf{r} \times\left[\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}\right]$

$$
\begin{aligned}
& =\mathbf{r} \times\left[\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}\right] \\
& =\mathbf{r} \times\left(-\mathbf{a} \times \nabla t_{r}\right)
\end{aligned}
$$

\#4 $\mathbf{v} \times(\nabla \times \mathbf{r})=\mathbf{v} \times\left[\left(\frac{\partial\left(z-W_{z}\right)}{\partial y}-\frac{\partial\left(y-W_{y}\right)}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial\left(x-W_{x}\right)}{\partial z}\right.\right.$

$$
\left.\left.-\frac{\partial\left(z-W_{z}\right)}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial\left(y-W_{y}\right)}{\partial x}-\frac{\partial\left(x-W_{x}\right)}{\partial y}\right) \hat{\mathbf{z}}\right]
$$

$$
=\mathbf{v} \times\left(-\mathbf{v} \times \nabla t_{r}\right)
$$

$$
\nabla V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q c}{(\mathbf{r} c-\mathbf{r} \cdot \mathbf{v})^{3}}\left[(\mathbf{r} c-\mathbf{r} \cdot \mathbf{v}) \mathbf{v}-\left(c^{2}-v^{2}+\mathbf{r} \cdot \mathbf{a}\right) \mathbf{r}\right]
$$

Similar calculations

$$
\begin{aligned}
& \frac{\partial \mathbf{A}}{\partial t}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q c}{(\mathbf{r} c-\mathbf{r} \cdot \mathbf{v})^{3}}\left[\begin{array}{l}
(\mathrm{r} c-\mathbf{r} \cdot \mathbf{v})(-\mathbf{v}+\mathbf{r a} / c) \\
+\frac{\mathrm{r}}{\mathrm{c}}\left(c^{2}-v^{2}+\mathbf{r} \cdot \mathbf{a}\right) \mathbf{v}
\end{array}\right] \\
& \mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{(\mathbf{r} \cdot \mathbf{u})^{3}}\left[\left(c^{2}-v^{2}\right) \mathbf{u}+\mathbf{r} \times(\mathbf{u} \times \mathbf{a})\right]
\end{aligned}
$$

where $\mathbf{u} \equiv c \boldsymbol{r}-\mathbf{v}$
$\nabla \times \mathbf{A}=\frac{1}{c^{2}} \nabla \times(V \mathbf{v})=\frac{1}{c^{2}}(V(\nabla \times \mathbf{v})-\mathbf{v} \times \nabla V)$

$$
\begin{aligned}
& =-\frac{1}{c} \frac{q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{(\mathbf{r} \cdot \mathbf{u})^{3}} \mathbf{r} \times\left[\left(c^{2}-v^{2}\right) \mathbf{v}+(\mathbf{r} \cdot \mathbf{a}) \mathbf{v}-(\mathbf{r} \cdot \mathbf{u}) \mathbf{a}\right] \\
& =\frac{1}{c} \frac{q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{(\mathbf{r} \cdot \mathbf{u})^{3}} \mathbf{r} \times\left[\left(c^{2}-v^{2}\right) \mathbf{u}+\mathbf{r} \times(\mathbf{u} \times \mathbf{a})\right]=\frac{1}{c} \mathbf{r} \times \mathbf{E}
\end{aligned}
$$

where $\mathbf{r} \times \mathbf{v}=-\mathbf{r} \times \mathbf{u}$.
$\mathbf{B}=\frac{1}{c} \boldsymbol{r} \times \mathbf{E}$
The magnetic field of a point charge is always perpendicular to the electric field, and to the vector from the retarded point.
$\mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{(\mathbf{r} \cdot \mathbf{u})^{3}}[\underbrace{\left(c^{2}-v^{2}\right) \mathbf{u}}_{\text {velocity field }}+\underbrace{\mathbf{r} \times(\mathbf{u} \times \mathbf{a})}_{\begin{array}{l}\text { acceleration field } \\ \text { radiation field }\end{array}}]$
$v=0$ and $\mathbf{a}=0$
$\mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{(c \mathbf{r})^{3}}\left(c^{3}\right) \mathbf{r}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{\mathbf{r}^{2}} \boldsymbol{r}$

Example 10.4

Calculate the electric and magnetic fields of a point charge moving with constant velocity.

Solution:
$\mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{(\mathbf{r} \cdot \mathbf{u})^{3}}\left(c^{2}-v^{2}\right) \mathbf{u}$, since $\mathbf{a}=0$.
$\mathbf{u}=c \hat{\mathbf{r}}-\mathbf{v}$
$\Rightarrow \mathbf{r} \mathbf{u}=c \mathbf{r}-\mathbf{r} \mathbf{v}=c\left(\mathbf{r}-\mathbf{v} t_{r}\right)-c\left(t-t_{r}\right) \mathbf{v}=c(\mathbf{r}-\mathbf{v} t)$;
$\Rightarrow \mathbf{r} \cdot \mathbf{u}=c \mathbf{r}-\mathbf{r} \cdot \mathbf{v}=R c \sqrt{1-v^{2} \sin ^{2} \theta / c^{2}}$ (Prob. 10.14)
where θ is the angle between \mathbf{R} and \mathbf{v}.
$\mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} \sin ^{2} \theta / c^{2}\right)^{3 / 2}} \frac{\hat{\mathbf{R}}}{R^{2}}, \quad$ where $\mathbf{R} \equiv \mathbf{r}-\mathbf{v} t$

Homework of Chap. 10

Prob. 4, 9, 12, 13, 23, 24

