Chapter 10: Potentials and Fields
10.1 The Potential Formulation
10.1.1 Scalar and Vector Potentials

In the electrostatics and magnetostatics,

V-E=L, (i) VxE=0
&g
(iH)V-B=0 (iV) VxB = puJ
the electric field and magnetic field can be expressed using
potential: 1
E=-VV -VA ==p
o

B=VxA Vx(VxA) = pd
Vx(VxA)=V(V-A) -V’A=puJ = -V’A=uJd
If V.-A=0. 1

Scalar and Vector Potentials

In the electrodynamics,

HV-E=2L, (i) vxE=—28
& ot
(i) V-B=0 (V) VxB=pd+ s, L

ot
How do we express the fields in terms of scalar and vector
potentials?

B remains divergence, so we can still write, B=VxA
Putting this into Faraday’s law (iii) yields,
VxE:—%(VxA) :Vx(—%) = Vx(E+a—A) =0

E+— 6A =-VV )
ot

Scalar and Vector Potentials
B=VxA E=-VV _8_A
ot

i)VE=Tp —e VNS = p

&o &g

. J0E
(V) VxB = pugd + tye,— p =Vx(VxA) =y, - ,uOEOV( ) HoEo—5

We can further yields.

vz\/+§(V-A)=—ip

0
o0°A oV
[VZA — &y y] —V(V A+ Ho&o Ej = —,LIOJ

These two equations contain all the information in Maxwell’s

0’°A

ot?

equations. 5

Example 10.1

Find the charge and current distributions that would give rise
to the potentials.

*‘0" - for [x|<ct
V=0 A= < (ct—| x|’z IX|

0 for |x>ct

Where k is a constant, and cis the speed of light.
. 0

Solution: p=-¢, a(V -A)

1 °A) 1
J =—(V2A—,uogoat2]+V(V'A)

Ho Ho

v.oA_OA LA A

6X 6y 0z

62 82 62 ,ukA p=0
VA= (7 SPAE= _

ay J=0

2

“Hobo— 5 8- —Ho& oltl;.kcz_l%k2 *

ot 4c




Example 10.1 (ii)

Since the volume charge density and current density are
both zero, where are the electric and magnetic fields from?
p=0and J=0

They might originate from surface charge or surface current.

0 HoK N
E=-2(V-A)=-2%ct-
VA =Xz

B=vxA =459t xp2g =+ 4K (- [ x)§
4c ox 2c

jere e T

nx(H -H")

There is a surface current K in the yz plane. K

xi'uikctf':ktﬁ
Hy C

Il
=)>

How do we know?

10.1.2 Gauge Transformations

We have succeeded in reducing six components (E and B)

down to four (V and A). However, V and A are not uniquely
determined.

We are free to impose extra conditions on V and A, as long
as nothing happens to E and B.

Suppose we have two sets of potential (V, A) and (V', A),
which correspond to the same electric and magnetic fields.

A'=A+a andV'=V+p

B=VxA=VxA' = Vxa=0 = a=VA
E:—VV’—%:—VV—%—(Vﬂ+‘%“J )
= (ﬂ+§)=k(t)

oA
= V(ﬂ'i‘a):o

6

Gauge Transformations

a=Vi=Va A'=A+V1
! =

=% k=2~ vi=y_%

ot ot ot

Conclusion: For any scalar function A, we can with impunity
add VA to A, provided we simultaneously subtract ol/ot to V.

Such changes in V and A do not affect E and B, and are
called gauge transformation.

We have the freedom to choose V and A provided E and B
do not affect --- gauge freedom.

10.1.3 Coulomb Gauge and Lorentz Gauge

There are many famous gauges in the literature. We will
show the two most popular ones.

vz\/+§(V-A)=—ip

&g
0°A oV
(VZA_IUO‘QO?]_V(V.A—F/JOEOEJ=_/uOJ
The Coulomb Gauge: V.A=0

vy oL p (Poisson's equation)
)

Vet =+ 250
4re, r

d7z’ (setting V=0 at infinity)

V instantaneously reflects all changes in p. Really?

E=-VV —% unlike electrostatic case. 8




The Coulomb Gauge

Advantage: the scalar potential is particularly simple to
calculate; 1
VA =—-— p (Poisson's equation)

&g

V(r,t) = i j @df (setting V=0 at infinity)
0

Disadvantage: the vector potential is very difficult to
calculate.
O°A oV
VEA = —ptod + (1, ra +V (14, E))

The coulomb gauge is suitable for the static case.

The Lorentz Gauge

\v&aY +2(V-A):—ip
ot 0
0°A vV
[VZA—,UOSO atz j (V A+ﬂ08 E] —/,IOJ
The Lorentz Gauge: V. A+yog0 6‘t =0
o 1
VA — e, S ==
Ho&o ot gop
0°A
VZA_IUOEO? =—HoJ
2 1
2 o _ 2 o2V =——
V- 1y, pe =0 & P
o’: the d'Alembertian oA =—puJ 10

The Lorentz Gauge

Advantage: It treat V and A on an equal footing and is
particularly nice in the context of special relativity. It can be

regarded as four-dimensional versions of Poisson’s equation.

V and A satisfy the inhomogeneous wave equations, with a
“source” term on the right.
o’V = _1 Yo,
)

0’ A =—uJ

Disadvantage: ...

We will use the Lorentz gauge exclusively.

11

10.2 Continuous Distributions
10.2.1 Retarded Potentials

VA A | 1
Mooz =75 P static case VAV = P
az [ ——— 0
VA = 18, P —Hod VA = — )

Four copi es of Poisson's equation

V(r) = J’p(r)d :

4re,

A(r) = 4ﬂjJ(")d :

12




Retarded Potentials

In the nonstatic case, it is not the status of the source right

now that matters, but rather its condition at some earlier time

t. when the “message” left.
r .
t =t—— (caled theretarded time)
C

Retarded potentials:

V(r,t) :ij'p(r;,’tr)df ‘Argument: The light we see now
left each star at the retarded time
corresponding to that start’s

H )
Afr,t)="= J.gd distance from the earth.

This heuristic argument sounds reasonable, but is it
correct? Yes, we will prove it soon.

13

Retarded Potentials
Satisfy the Lorentz Gauge Condition
Show that the retarded scalar potentials satisfy the Lorentz
gauge condition
_ p(r ~ ov_ 1
V(r,t)= J. VA — ptyey— o Sop

Sol:

TV = Iv[p(r t)jd . Ir(Vp) pvI) 4
47[8 r 4re

14

Retarded Potentials
Satisfy the Lorentz Gauge Condition (ii)
—A+p—f]dr'
Ccr

V.-VV =V = -1
Tl

g r .F r
V- [p +p—2 =—V-(p—)+V-(p—2)
cr r r r

1 Fo. . F _F f
=—[=-Vp+pV-=]+[—= Vp+pV =]
cr r r r

Vo=V ) =Lyt = pvr-—L¢ and vp-"Lr
o, ¢ c ¢
Fo1 F oV 1
VF:? and VF:47Z'53(r) Vz\/_luogo—atz z—g—p

0

1p
——ZE"F 47Z'p53(r)]

:-izp+47zp53(r) 15
C

Retarded Potentials
Satisfy the Lorentz Gauge Condition (iii)

-1 1. 1¢ p p(r,t)
VAV = —= p+Anpdc(Nde’ == dr’'—
472'80'[ c? p+anpo(r)ldz c? '[ 4 ‘ &

j p dr'=j 1 azpdr'—azj P dr'—azv:&

4re, 4ng, o7 - ot? Y Are, - ot? ot?
L1V p(rY)
¢’ ot? &
v _i@z\/ :_p(r,t)
¢’ ot? &
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Retarded Potentials Satisfy the Lorentz Gauge
Condition
Show that the retarded vector potentials satisfy the Lorentz

The Principle of Causality

This proof applies equally well to the advanced potentials.

gauge condition. . Advanced potentials: Sy .
Ho (IO A_ T
Ar,t) = ﬁdeT VZA‘ﬂogo? =—HoJ V(r,t) = 47:: VAV — o —— o : P
Sol: A(r,t) _&J.J(r )d ' VZA_ﬂogoaz_? =~HoJ
' ‘ , ’ 4z r at
' r—r
v. Jr',t))_r(v-9)-J-(vr) t=t- ‘r r‘
r r? C t =t+—
[ T T T T T T e T T T T T T T T T T T s e C
Using quotient rule v.(é} = g(V-A)—A-(Vg)i The advanced potentials violate the most sacred tenet in
g9, 92 777777777777 ‘ all physics: the principle of causality.
See Prob. 10.8... - No direct physical significance. B
Example 10.2 fe? 1
fort<0 A(sit) = (“00 2|’

An infinite straight wire carries the current [(t) = {I fort> 0
>
Find the resulting electric and magnetic fields. °

Sol: The wire is electrically neutral, so the retarded scalar
potential is zero.

A(r,t) = A(st)_”o j—d g ji@dz

For t<s/c, the “news” has not yet reached P, and the
potential is zero.

For t>s/c, only the segment |z <4/(ct)>~s* contributes.

19

Y@= g2 4 72 o
I R W oW
= (%z)ln(\/sz +22+2)

T 0

_ (;g,lo i)ln(cth/(ct)z —sz)
7T

S

E__a_A__ ol oC 7
ot 2z (ct)? -

OA ~ _ tlo ct A

0s (P 27S ,(Ct)z—Sz ?

B=VxA=-

20




Retarded Fields?

Can we express the electric field and magnetic field using the
concept of the retarded potentials? No.

Retarded potentials:
V(r t):ij‘p(r;"tr)df' E(r,t);«r&i
’ Are 471'80

Retarded fields: (wrong)
j—p(:z’tf) Fdr’
J

A t 1 J(,
A(r,t) = Z J.Md B(r,t) # 4z, J. .

t)xF
2

dr’

How to correct this problem?

"> Jefimenko’s equations.

21

10.2.2 Jefimenko’s Equations
Retarded potentials:

V(r,t):LIMdT, and A(r’t):ﬂJ-J(r,tr) ;
4re, r Ar r =d

VW j[pr "r]d'
oA Are,
E=-VV-—
AT OA 0 [At) g2
ot ot 4r ot
r_ ﬂo ’
E= dr —d
4re, J.[ ] I

The time-dependent generalization of Coulomb’s law.

Ho ¢ d
S

22

Jefimenko’s Equations (ii)
Retarded potentials:

V(r,UzéJ@dr’ and A(r’t)ZZOIJ(r )

My d 1 , The time-dependent generalization
B= J.[ 7+ JIxfd of the Biot-Savart law.

These two equations are of limited utility, but they provide

a satisfying sense of closure to the theory. ”s

10.3 Point Charges
10.3.1 Lienard-Wiechert Potentials

What are the retarded potentials of a moving point charge q?

Consider a point charge q that is moving on a specified
trajectory W(t) = position of g at timet.
|r— wit, )|

C
W(t,) the retarded position of the charge.

The retarded time is: t =t—

r

The separation vector r is the vector from the retarded
position to the field point r -

FL

r=r—-Ww(,)

24




Communication

Is it possible that more than one point on the trajectory are
“in communication” with r at any particular time t?

No, one and only one will contribute.

Suppose there are two such points, with retarded time t, and
t:
Y on=ct-t)adr=c(t-t) => K-r,=c(-t)

This means the average velocity of the particle in the
direction of r would have to be c. € violate special relativity.

Only one retarded point contributes to the potentials at any
| given moment.

r
1
1
'
'

Total Charge

1 p(rllt) ’ 1 1 4 !
V(r,t)= ! = —_— ,t)d
(r.t) 471'6‘0'[|r—W(tr)| 4, |r—w(tr)|m
#q

The retardation obliges us to evaluate p at different times for
different parts of the configuration.

The source in motion lead to a distorted picture of the total
charge.

Ip(r' t )dr' = q No matter how small the
o 1-f-v/c  chargeis.

To be proved.

26

Total Charge: a Geometrical Effect

A train coming towards you looks a little longer than it really
is, because the light you receive from the caboose left earlier
than the light you receive simultaneously from the engine.

iy =

STV G

L_L-Lo L

C v “1-vic
L -
T 1-vic Approaching train appears longer.
L - A train going away from you looks shorter.

T1trvic 27

Total Charge: a Geometrical Effect (ii)

In general, if the train’s velocity makes an angle 6 with your
line of sight, the extra distance light from the caboose must
coveris L'cosé . :

L'cosé L'-L , L
= = L'=——
c \Y; 1-vcosé/c

This effect does not distort the dimensions perpendicular to
the motion.

The apparent volume t’ of the train is ' r

related to the actual volume t by . “1-F-vic »8




Lienard-Wiechert Potentials

It follows that

V(r,t): 1 Ip(r’tr)dz_': 1 q ,
4re, r 4re, (r—r-vlc)

A(r,1) :f—;jwdf :Z‘—;@jp(ﬂ,tr)df

=ﬂL=%V(r,t)
Az (r—-r-v/c) c¢

where p(r',t,) =gqo(r' —r,t,)

The famous Lienard-Wiechert potentials for a moving point
charge. %

Example 10.3

Find the potentials of a point charge moving with constant
velocity. Assume the particle passes through the origin at time
t =0.

Sol: The trajectory is: W(t) = vt

First compute the retarded time: [r— W(t, )| =|r— vt |=c(t-t,)
r>—2r-vt +Vt> =c*(t* - 2it, +t%)

(=2 +2(r-v—ct)t +(ct*-r?) =0

(Ct-r-v):\(r-v—c)? - (¢ —V?)(ct? —r?) Which sign

t i ?
r (Cz —V2) IS correct”

Consider v=0 tr=ti\/t2—(t2—r2/02)=tirlc
We want the negative sign 3o

Cont: _ (Ct—r-v)—/(r-v—ct)’ — (¢ —V?)(c? —r?)
r (c*-Vv?)

r—vi

c(t-t.)

r=c(t-t), and f =

r-r-vic=clt-t)|1--- r-vt,
c c(t-t,)

2
ooy %,
C C

=%[(czt—r-v)—(c2—v2)tr]

R )

1 qc
V(r’t)_4 T 2\2 (2 .\ 2\(r22 2
78y \J(r-v—ct)? — (¢ —V?)(ct? —1?)

A(r,t)zluo qCV

E\/(r-v—czt)z—(cz—VZ)(CZtZ—rz) 3

10.3.2 The Fields of a Moving Point Charge

Using the Lienard-Wiechert potentials we can calculate the
fields of a moving point charge.

1 q
4re, (r—r-vlc)

Find: E:—VV—%—? and B=VxA

V(r,t) =

and A(r,t):%V(r,t)

The separation vector: r=r—r'=r-W(t,) and v=W(t,)

The retarded time t,: [r—W(t,)|=c(t—t,)

t is a function of r and t.
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Gradient of the Scalar Potential

vV - 1 —qc

dme. (F ¥ VIO >V(r—r-v/c)
TTEy % J

—
Vr =Vvc(t-t )=-cVt,

V(r-v)=r-Vv+v-Vr+rx(Vxv)+vx(Vxr)
#l #2 #3 #4
0 0
—+r,—)v
Yoy 0z
_(r, dv ot L 4V dvﬁt ﬂ@t
dt ox ydt ay dt 0z
=a(r-Vt,)

#l (r-V)v= (rxi
OX

—)

acceleration 33

” (v-V)r=(v.V)r—(v.V)W(tr)=—(vx3+vy3+vzﬁ)war)
OX oy 0z

dw ot dW&t dw ot

=v—(V,——-+V , y W,
d, ox U, oy C o, oz
=v(d-(v-Vt,))
AR ~ o,
—r{ a0 ay)z}
rx(—ath
#4 V)((er)zv>< (8(Z—WZ)_8(y Wy))f(_f_(w
0z oz
_O(z-W), . OY-W)  a(x-W,), -
OX Jy+( ax oy )z
:Vx(_VXVtr) 34

V(Ir-v)=r-Vv+v-Vr+rx(Vxv)+vx(Vxr)
# #2 #3 #4
=a(r-Vt,)+v(@d-(v-Vt))-rx(axVt )+ vx(vxVt,)
=v+(r-a-v’)vt,

vt=vie tvre twrpro v
c C C 2c(r-r)
= —ﬁ[m(Vw)ﬂr-V)r]
where rx(Vxr)=
(r-v)r=(r-vV)r-w(,))=r—v(r-vt)
’:_W[rX(VXVtr)+r_v(r'Vtr)]

L or—(rvwvt)] svi=—"
2cr cr-r-v
35

1 qc
4rzg, (rc—r-v)®

VV =

[(re-r-v)v—(c =V’ +r-a)r |

Similar calculations

oA 1 ac (rc=r-v)(-v+ral/c)
ER 4rg, (rc-r-v)® +£(c2 —VZ+r-a)v

Eo-yv-A__ 4 T

ot 4ng, (r-u)’

[(C2 —V)u+rx (uxa)]

whereu=cf —v

36




Curl of the Vector Potential

VxA=i2Vx(\/v)=i2(V(va)—vaV)
C C

1 q r
c Ang, (r -u)®
1l q r
Tc Ang, (r -u)®

rx[(c*—v?)v+(r-a)v—(r-ua]

rx[(cz—vz)u+rx(uxa)]:EfxE
Cc

wherer xv =—r xu.

' The magnetic field of a point charge is always
B=—FxE !perpendicular to the electric field, and to the
C ! .
' vector from the retarded point.
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Generalized Coulomb Field

q r 2 2
E= C =V r
dzz, (F ) ( Ju + x (uxa)

%’_/ %/_/
velocity field acceleration field
radiation field

v=0anda=0

— q r - (C?’)f — q
4re, (cr) e, ¥

Example 10.4

Calculate the electric and magnetic fields of a point charge
moving with constant velocity.

Solution:

:4q ( r)3(02—v2)u, sincea =0.
7e, (r-u

u=crf-v

= ru=cr—-rv=c(r-vt,)—c(t—t )v=c(r—vt);

= r-u=cr—r-v=Rc/1-V?sin?@/c® (Prob. 10.14)
where 6 isthe angle between R and v.

q 1-Vv?/c? R )
= 47[8 (1—V29n2 0/C2)3/2 E! Whae R=r-vt
0 39

Fields of a Moving Point Charge

I

ey
_ 9 1-v/2 R |
4rg, 1-V’Sn*0/c?)¥? R®’ f
where R=r— vt IR
Fym ®
-
r“f: Hm" g
B=1(FxE)=— (vxE) bl —
c Cc WY
\_/




Homework of Chap.10

Prob. 4, 9, 12,13, 23, 24
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