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Chapter 10 Systems of Particles

Consider a system consisting of a large number of particles. 
It is almost impossible to clearly describe the motion of 
each particle, even though their collisions are elastic. 

Center of Mass (CM)

How do we apply our understanding on force, momentum, 
kinetic and potential energy, and conserved quantities to 
such a system?
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10.1 Center of Mass
When the motion of a body involves not only translation but 
also rotation or vibration or both, we must treat it as a 
system of particles. 

Despite the complex motions of which a system is capable, 
there is a single point, the center of mass (CM), whose 
translational motion is characteristic of the system as a 
whole.
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Where is the Center of Mass?
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The position xcm is a weighted average in which each 
coordinated is weighted by the mass located at that point.

For N particles the position of CM is:
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Center of Mass and Center of Gravity
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Under uniform gravity, the position of the center of mass is 
exactly the same as that of center of gravity.

The center of mass of a symmetric body always lies on an 
axis or a plane of symmetry.

Locating the center of mass of a planar body.
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Example 10.2

A thin rod of length 3L is bent at right angles at a 
distance L from one end (see Fig. 10.7). Locate the CM 
with respect to the corner. Take L=1.2 m.

Sol:
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10.2 Center of Mass of Continuous Bodies

To find the center of mass of a continuous body one must 
integrate the contributions of each mass element dm.
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Example 10.3

Find the CM of a semicircular rod of radius R and linear 
density λ kg/m as shown in Fig. 10.10.

Sol:
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Example 10.4
Find the CM of a uniform solid cone of height h and 
semiangleα, as in Fig. 10.11. 

Sol:
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Questions

Is it possible for the center of mass of a high jumper or 
pole vaulter to pass under the bar while the torso 
passes over it? If so, how?

Is it possible to have a system with zero kinetic energy 
but zero total linear momentum? If so, give an example. 
(b) How about nonzero linear momentum but no kinetic 
energy.
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10.3 Motion of the Center of Mass (I)

M
m

dt
d iicm

cm
∑==

vrv

Velocity of the center of mass

The total momentum of a system of particles is equivalent 
to that of a single (imaginary) particle of mass M=Σmi
moving at the velocity of the center of mass vcm.

Total linear momentum of a system of particles

∑== iicm mM vvP
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10.3 Motion of the Center of Mass (II)

constant   then   ,0 If == cmvFext

Force of the center of mass

If the net external force on a system of particles is zero, 
the velocity of the center of mass remains constant.

The rate of change of the total momentum of a system is 
equal to the net external force.
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Example 10.7
A 75-kg man sits at the rear end of a platform of mass 
25 kg and length 4 m, which moves initially at 4 m/s
over a frictionless surface. At t=0, he walks at 2 m/s
relative to the platform and then sits down at the front 
end. During the period he is walking, find the 
displacements of: (a) the platform, (b) the man, and  (c) 
the center of mass.
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10.4 Kinetic Energy of 
a System of Particles (I)

icmi rrr ′+=

icmi vvv ′+=

The position ri of the i-th particle can be re-written as the 
sum the position of center of mass rcm plus the position 
relative to the center of mass.

Taking the time derivative of above equation, the velocity 
of the i-th particle is

The kinetic energy of the i-th particle is 

)2()( 22
2
1

2
1

icmicmiiiii vvmmK vvvv ′⋅+′+=⋅=

14

10.4 Kinetic Energy of 
a System of Particles (II)

)()( 2
2
12

2
1

2
1

iicmiicmiii mvmMvmK vvvv ′⋅+′+=⋅= ∑∑∑
The total kinetic energy of the system is 

The total kinetic energy is K=Kcm+Krel

The kinetic energy of the CM relative to 
the fixed origin O
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∑ The kinetic energy of the particle relative 
to CM.
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Historical Note: Mass-Energy Equivalence

Einstein imagined a closed and isolated box with a light 
bulb at one end and a detector at the other. Once the bulb 
emits a flash of light toward the detector, the box recoils, 
because wave carries momentum. When the flash is 
received by the detector, the box will experience an equal 
and opposite impulse, and so the whole system will again 
come to rest. The CM of this isolated system seems not 
be fixed. Why? 

Conservation of linear momentum led Einstein to note the 
flash of light is not weightless. He then went on to derive 
the famous equation E=MC2 that relates the mass of a 
particle to its total energy.
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10.5 Work-Energy Theorem
For a System of Particles (I)

1. Review work-energy theorem in one dimension with 
kinetic energy only (Sec. 7.3).

2. Review work-energy theorem with both kinetic energy 
and potential energy (Sec. 8.6)
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7.3 Work-Energy Theorem in One Dimension

Work-energy theorem states that the net work done on a 
particle is equal to the resulting change in its 
(translational ) kinetic energy.

KWnet ∆=

Whereas force and acceleration are vectors, work and 
energy are scalars, which make them easier to deal with.

True/false: If the kinetic energy of a body is fixed, the net 
force on it is zero. Explain your response.

18

8.6 Mechanical Energy and 
Non-conservative Force

UKWEEE ncif ∆+∆==−=∆

The conservation of mechanical energy may be applied 
to a system only when there is no work done by any 
non-conservative force. 

The above equation is the modified conservation of 
mechanical energy when work is done by non-
conservative force. 

For example, press or pull a spring and lift a stone by 
hand.
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10.5 Work-Energy Theorem
for a System of Particles (II)

From Sec. 10.4, we know the kinetic energy for a 
system of Particles can be decomposed as K=Kcm+Krel .

Newton’s third law states that the internal forces cancel 
in pair, that is, ΣFint=0. However, this statement does 
not imply the internal forces will not do work; that is, 
ΣWint≠0.

Consider, for example, a stationary, isolated system of 
two equal blocks held against a compressed spring. 
When the spring is released, the work done by internal 
force of the spring change kinetic energy relative to the 
CM, while the CM itself stays fixed.
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10.5 Work-Energy Theorem
for a System of Particles (III)

relcmintext KKWW ∆+∆=+

The work-energy theorem for a system must include 
both external and internal works:

Since all the basic interactions are conservative, one 
can always express internal work by the change of 
internal potential energy.
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10.5 Work-Energy Theorem
for a System of Particles (IV)

The above equation says that the external work on a 
system can change the translational kinetic energy of 
the CM and whatever forms of internal energy the 
system possesses.

This internal energy includes: elastic potential energy, 
gravitational potential energy, electromagnetic energy, 
chemical energy, nuclear energy, thermal energy, and 
so on.

intcmext EKW ∆+∆=
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The CM Equation

∫∫∫ ′+== iicmiii dddW rFrFrF    i

The external work Wi done by external force Fi on the i-
th particle can be expressed as:

Where, Wcm is the external work associated with the 
displacement of the CM and Wrel is the external work 
associated with displacements relative to the CM.

One can relate Wcm to ∆Kcm through Newton’s second 
law. 

relcmext WWW +=

The total external work Wext is therefore the sum of two 
terms:

cmcm KW ∆= (CM equation)
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10.7 Systems of Variable Mass
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How do we deal with the dynamics of a system whose 
mass is not constant?

However, this equation is valid only when single 
particle is considered.

The force can be expressed as the time derivative of 
momentum
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Two Masses Stick Together
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The change in momentum of the system in time ∆t is

The external force equals
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Rocket Thrust

In the case of a rocket, external force would be the 
gravitational force, the force due to air resistance and 
rocket thrust. The thrust is:

Since the exhaust gases are expelled backward, Vrel <0 
and the mass of the rocket is decreasing, thus the thrust 
is in the positive direction.

dt
dM

relThrust v=

26

Questions

Only a net external force can change the velocity of the 
CM of a system. So what purpose does the engine of a 
car serve?

How do we handle a system consisting of multiple 
particles?
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Example 10.11

N 105.3Thrust 7
rel ×==

dt
dMv

The mass of the Saturn V rocket is 2.8x106 kg at launch 
time. Of this, 2x206 kg is fuel. The exhaust speed is 
2500 m/s and the fuel is ejected at the rate of 1.4x104

kg/s. (a) Find the thrust of the rocket. (b) What is its 
initial acceleration at launch time? 

Sol: (a) The magnitude of the thrust is given by

(b) The acceleration is given by dividing both side by mass.

2rel m/s 7.25.128.9 =+−=+−==
dt

dM
M

g
dt
dva v
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9.7 Rocket Propulsion (I)
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Consider a rocket of mass M with fuel of mass ∆m. when 
the rocket engines are fired, the gases are expelled 
back with an exhaust velocity of vex relative to the 
rocket. The acceleration can be derived from thrust:

On integrating both sides, we find
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9.7 Rocket Propulsion (II)

1. The change in the velocity of the rocket is directly 
proportional to the exhaust velocity.

2. The final velocity vf is depended on the mass ratio of 
rocket (Mf) to rocket plus fuel (Mi).

3. For fixed mass ratio, increasing the exhaust velocity vex 

will raise the final velocity.
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At what velocity, the rocket gains more kinetic energy 
from a given quantity of fuel?
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Exercises and Problems

Ch.10: Ex.5, 15, 17, 27, 34

Prob. 2, 3, 8, 9, 12


