
1

Chapter 11 Rotation of a Rigid Body 
about a Fixed Axis

We now broaden our interest to include the rotation of a 
rigid body about a fixed axis of rotation. 

A rigid body is defined as an object that has fixed size and 
shape. In other words, the relative positions of its 
constituent particles remain constant. Although a perfectly 
rigid body does not exist, it is a useful idealization. 

By “fixed axis” we mean that the axis must be fixed relative 
to the body and fixed in direction relative to an inertia frame.

The discussion of general rotation, in which both the position 
and the direction of the axis change, is quite complex.
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11.1 Rotational Kinematics (I)

rs /=θ
Form the definition of a radian (arc length/radius) we know.

Disk 5: radian disk
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11.1 Rotational Kinematics (II)
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The instantaneous angular velocity

The period T is the time for one revolution and the 
frequency f is the number of revolutions per second (rev/s).
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11.1 Rotational Kinematics (III)
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The average angular acceleration

The instantaneous angular acceleration
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11.1 Rotational Kinematics (IV)

For future reference let us establish the following: The 
angular velocity of a rotating body is the same relative to 
any point on it.
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Rolling

The increase in speed with distance from the point of 
contact is easily seen in the spokes of a bicycle wheel: 
The ends of the spokes need the road are fairly distinct, 
whereas those at the top are blurred.
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Example 11.1

A flywheel of radius 20 cm starts from rest, and has a 
constant angular acceleration of 60 rad/s2. Find: (a) the 
magnitude of net linear acceleration of a point on the rim 
after 0.15 s; (b) the number of revolutions completed in 
0.25 s.

Solution:

(a) Find out tangential and radial (centripetal) acceleration.

at=αr=12 m/s2,  ar=ω2r=16.2 m/s2

(b)θ=αt2/2=1.88 rad=0.3 rev.
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11.2 Rotational Kinetic Energy 
and Moment of Inertia
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The kinetic energy of i-th particle is:

Total kinetic energy is:

Moment of Inertia: ∑= 2
iirmI

The moment of inertia of a body is a measure of its 
rotational inertia, that is, its resistance to change in its 
angular velocity.
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Moment of Inertia

A  cylinder, a disk, and a ring with same mass. The 
moments of inertia about the central axis depend on how 
the mass is distributed relative to the axis: IC >IB>IA.

10

Questions (I)

1. True or false: A quick way of computing the moment of    
inertia of a body is to consider its mass as being 
concentrated at the center of mass.

4. The book in Fig. 11.39 has the same shape as this text.    
About which axis is the moment of inertia (a) the largest;   
(b) the smallest?
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Kinetic Energy and Parallel Axis Theorem

2
cm2

12
cm2

1 ωIMvK +=

2
cm

2
cm2

122
2
12

cm2
12

cm2
1

MhII

IMhIMvK

+=

+=+= ωωω

The total kinetic energy of the system is K=Kcm+Krel or 

If the axis of rotation is located at a perpendicular distance 
h from the CM, as shown in figure below.

The total kinetic energy is:

This relationship is called the parallel 
axis theorem.
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11.3 Moment of Inertia of Continuous Bodies

The moment of the inertia of the whole body takes the form 

Please see the following two examples.

∫= dmrI 2

Keep in mind that here the quantity r is the perpendicular 
distance to an axis, not the distance to an origin.
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Example 11.6

Find the moment of inertia of a circular disk or solid 
cylinder of radius R about the following axes: (a) through 
the center and perpendicular to the flat surface; (b) at the 
rim and perpendicular to the flat surface.

Solution:

(a) dI=r2dm=2πσr3dr , For the  
whole body, I=1/2MR2

(b) parallel axis theorem 
Irim=Icm+MR2=3/2MR2
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Example 11.7
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Find the moment of inertia of a uniform solid sphere of 
mass M and Radius R about the diameter.

Solution:
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Example 11.8
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A solid sphere and a disk are released from the same point 
on an incline, as shown in Fig.11.19. Given that they roll 
without slipping, which has greater speed at the bottom? 
Ignore dissipative effects.

Solution:

The higher Icm, the lower angular velocity. Disk 6: Rolling Bodies on Incline
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Questions (II)

5. Two identical cans of concentrated orange juice are 
released at the top of an incline. One is frozen and the 
other has defrosted. Which reaches the bottom first?

6. The spokes of wagon wheels sometimes appear to rotate    
backward on film or on TV. Why is this? 
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11.5 Torque (I)
The torque is the rotational analog of force: force causes 
linear acceleration; torque causes angular acceleration.

The “turning ability” of a force about an axis or pivot is 
called its torque.
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11.5 Torque (II)

Viewpoint 2: The lever arm r⊥ is the perpendicular distance 
from the origin (pivot or axis) to the line of action of the 
force F. 

Viewpoint 1: Only the perpendicular component of the force 
F⊥ contribute to the turning effect. 
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Although torque has the same dimension as energy, these 
two concepts are unrelated. 

Energy is a scalar, whereas torque is a vector.
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Example 11.10
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Three forces F1, F2 and F3 act on a rod at distances r1, r2, 
and r3 from the pivoted end, as shown in fig. 11.24a. Find 
the torque due to each force about the pivot. 

Solution:

We adapt the convention that a torque tending to produce a 
counterclockwise rotation is positive (right-hand rule).
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11.6 Rotational Dynamics of a Rigid Body 
(Fixed Axis) (I)
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Any component parallel to the axis 
(Fi//) is counteracted by the reaction 
of the supports. For the same reason 
any radial component (Fir) is also 
balanced. Only the component 
tangential to the circular path (Fit) will 
accelerate the particle.

The linear acceleration of the particle is related to the angular 
acceleration through at=αr. Thus, the second law becomes
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11.6 Rotational Dynamics of a Rigid Body 
(Fixed Axis) (II)

The torque on the particle about the axis is

where I is the moment of inertia about the given axis. The 
above equation is valid in two situations:

1. The axis is fixed in position and direction.

2. The axis passes through the CM and is fixed in direction 
only.
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The torques on all the particles is 

ατ
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These two 
equations are not 
vector equations.
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Questions (III)

9. Snow tires have a slightly greater diameter than summer 
tires. Is the reading of the speedometer affected?

11.About what axis is the moment of inertia of a person (a) 
the greatest? (b) the least? Are your answers subject to 
conditions? 
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Example 11.12
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A disk-shaped pulley has mass M=4 kg and radius R=0.5 
m. It rotates freely on a horizontal axis, as in Fig. 11.27. A 
block of mass m=2 kg hangs by a string that is tightly 
wrapped around the pulley. (a) What is the angular velocity 
of the pulley 3 s after the block is released? (b) Find the 
speed of the block after it has fallen 1.6 m. Assume the 
system starts at rest. 

Solution:

From these two equations, we can 
find two unknowns (α and T).
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Example 11.13

θθα sin
7

2
  and   sin

7

5
Mgfg

R
==

Figure 11.28 shows a sphere of mass M and radius R that 
rolls without slipping down an incline. Its moment of inertia 
about a central axis is 2/5MR2. (a) Find the linear 
acceleration of the CM. (b) Which is the minimum coefficient 
of friction required for the sphere to roll without slipping.

Solution:

From these two equations, we can 
find two unknowns (α and f).
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Example 11.15
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A uniform rod of length L and mss M is pivoted freely at one 
end. (a) what is the angular acceleration of the rod when it is 
at angle θto the vertical? (b) What is the tangential linear 
acceleration of the free end when the rod is horizontal? The 
moment of inertia of a rod about one end is 1/3ML2.

Solution:
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The acceleration of the free end might be greater than 
that of a free-fall!
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11.7 Work and Power (I)
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The work down by tangential component is

Thus, the power can be expressed as
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27

11.7 Work and Power (II)
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To derive the work-energy theorem for rotational motion, we 
first express torque in a convenient form. Using the chain rule 
we have

We next use this result in dW=τdθand integrate to find
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The work done by a torque on a rigid body rotating about a 
fixed axis leads to a change in its rotational kinetic energy.
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Questions (IV)

14. A spool of thread is on a rough surface (see Fig. 11.42). 
The axle has radius r while the rim has radius R. Discuss 
the motion of the spool for the various directions in which 
the thread is pulled, (a) For what angle is there sliding but 
no rolling? (b) What is the condition for the spool to wind 
up ?

Disk 6: Spool with 
Wrapped Ribbon
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Exercises and Problems

Ch.11: 

Ex.16, 32, 34, 36, 39, 53, 56, 58, 61

Prob. 3


