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Chapter 12 Angular Momentum and Statics

In the last chapter we specify just the sense, clockwise and 
counter clockwise, of a torque.

In this chapter torque is defined in a more general way that 
properly expresses its vector nature. 

Just as force is related to the linear momentum, we will 
see that torque is related to a quantity called angular 
momentum.  

The importance of angular momentum lies in the fact that it 
is a conserved quantity. 
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11.5 Torque (II)

Viewpoint 2: The lever arm r⊥ is the perpendicular distance 
from the origin (pivot or axis) to the line of action of the 
force F. 

Viewpoint 1: Only the perpendicular component of the force 
F⊥ contribute to the turning effect. 
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Although torque has the same dimension as energy, these 
two concepts are unrelated. 

Energy is a scalar, whereas torque is a vector.
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12.1 The Torque Vector

nFrτ ˆ sinθrF=×=

The definition of torque as a vector quantity is

Torque is in fact a vector quantity, and so its direction must 
be specified relative to a coordinate system. 

Where n is a unit vector normal to the plane of r and F. Its 
direction is given by the right-hand rule.
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Where is the Appropriate Origin?

In many instances the origin is chosen to lie on the axis.

Choosing the origin will affect the position vector r and 
subsequently torque τ. 

Since the position vector r is measured relative to an origin 
O, the torque is also measured relative to this point. 
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12.2 Angular Momentum

prrp ⊥== θsinl

Pr×=lSingle particle angular momentum:

Angular momentum is measured with respect to a point, 
the origin of the position vector r.

The SI unit of the angular momentum is kg·m2/s.

“Moment arm” r⊥ expression: 
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Motion along a straight line

prpr AAAAA )sin(sin θθ ==l
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Magnitude of angular 
momentum at position A

Since r⊥ (rA sinθA=rB sinθB) and p are constant, the 
angular momentum is also constant.

Magnitude of angular 
momentum at position B
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Motion along a circle

ω2)( mRmvR ==l

ω2mRz =l

If we choose the origin to be at the center, the magnitude 
of angular momentum is

The directions of the angular momentum L and angular 
frequency ω are generally not parallel. However, the z-
component of L does lie along ω.

8

System of particles
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The total angular momentum L of a system of particles 
relative to a given origin is the sum of the angular momenta
of particles.

Simple form for a rigid body rotating about a fixed axis.

Angular momentum is the rotational analog of linear momentum.
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Example 12.2

A disk of mass M and radius R is rotating at angular 
velocity ω about an axis perpendicular to its plane at a 
distance R/2 from the center, as shown in Fig.12.8. What 
is its angular momentum? The moment of inertia of a disk 
about the central axis is mR2/2.

Solution:

First find out the moment of inertia 
by applying parallel axis theorem.

I=MR2/2+M(R/2)2=3/4MR2.

The angular momentum is 
L=Iω=3/4MR2 ω.
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12.3 Rotational Dynamics
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Torque and angular momentum are rotational analogs of 
force and momentum. Since force is the time derivative of 
the momentum, torque and angular momentum can also 
be derived by the same technique. 

For a single particle, the torque acting on a particle is 
equal to the time rate of change of its angular momentum.

dt
dl

=τ
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Rotational Dynamics for System of Particles

dt
dLτ =ext

In the translational motion only the external force have to be 
considered; the internal forces between the particles cancel 
in pairs. In the rotational motion, a similar cancellation 
occurs with internal torques.

Rigid body rotating about a fixed axis:

This equation is valid only when both the torque and angular 
momentum are measured (i) with respect to the same origin 
in an inertial frame, or (ii) relative to the center of mass of 
the system---even if this point is acceleration.

ατ I=
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Example 12.4: Solution 1

Two blocks with masses m1 and m2 are connected by a 
rope that passes over a pulley of radius R and mass M; 
see figure below. Find out the linear acceleration of the 
blocks. There is no friction.

Solution 1:

Total angular momentum:

L=(m1+m2)R2ω+(M/2)R2ω

Torque: τ=M1gR=dL/dt

( m1+m2+M/2)R(Rα)=m1gR

Rα=a=m1g/(m1+m2+M/2) #
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Example 12.4: Solution 2

Two blocks with masses m1 and m2 are connected by a 
rope that passes over a pulley of radius R and mass M; 
see figure below. Find out the linear acceleration of the 
blocks. There is no friction.

Solution 2:

Mechanical energy conservation:

m1gh=(m1+m2)(at)2/2+(M/4)(at)2

Distance: h=(at)2/2a

( m1+m2+M/2)a=m1g

a=m1g/(m1+m2+M/2) #
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12.4 Conservation of Angular Momentum

constant   then  ,0 If EXT == Lτ

The principle of the conservation of angular momentum: 
If the net external torque on a system is zero, the total 
angular momentum is constant in magnitude and direction. 

Applying it to the special case of rigid bodies rotating 
about fixed axes, in which case the angular momentum is 
L=Iω. The initial and final angular momentum are equal.

iiff II ωω =body     Rigid
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Example 12.5:

A disk (lower) of moment of inertia 4 kg·m2 is spinning 
freely at 3 rad/s. A second disk (upper) of moment of inertia 
2 kg·m2 slides down a spindle and they rotate together. (a) 
What is the angular velocity of the combination? (b) What 
is the change in kinetic energy of the system? 
Solution:

(a) Angular momentum conserved

(6 kg·m2) ωf =(4 kg·m2)(3 rad/s)

(b) 
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Example 12.7:

A man stands on a stationary platform 
with a spinning bicycle wheel in his 
hands, as in Fig. 12.14. The moment 
of the inertia of the man plus platform 
is IM=4 kg·m2, and for the bicycle 
wheel it is IB=1 kg·m2. The angular 
velocity of the wheel is 10 rad/s
counterclockwise as viewed from 
above. Explain what occurs when the 
man turn the wheel upside down. This 
system is isolated in the sense that 
there are no external torques acting

Solution: See DVD example (D7 rotating stool)
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Example 12.8**:
According to Kepler’s second law of planetary motion, the 
line joining the sun to a planet sweeps out equal area in 
equal time intervals. Show that this is a consequence of the 
conservation of angular momentum.

Solution:
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Example 12.9:
A man of mass m=80 kg runs at a speed u=4 m/s along the 
tangent to a disk-shaped platform of mass M=160 kg and 
radius 2 m. The platform is initially at rest but can rotate 
freely about and axis through its center. (a) Find the 
angular velocity of the platform after the man jumps on. (b) 
He then walks to the center, find the new angular 
momentum. Treat the man as a point particle. 

* Find out a typo in the text.
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12.5 Conditions for Static Equilibrium

0=∑F

The subject of statics is concerned with the forces and 
torques that act on bodies at rest. 

The special case in which the body is at rest is referred to 
as static equilibrium.

When a=0, the body is in translational equilibrium. 

When α=0, the body is in rotational equilibrium. 

0=∑τ

What is dynamic equilibrium?
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12.5 Conditions for Static Equilibrium: 
examples

non-equilibrium     equilibrium
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12.6 Center of Gravity (I)

The center of gravity (CG) of a body is the point about 
which the net gravitational torque is zero.

How to determine the center of gravity? See example below, 

Find the pivot position where the net gravitational torque 
is zero. 

2211 ll WW =
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12.6 Center of Gravity (II)
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Just as the center of mass is the point at which the mass 
of a system appears to be concentrated, the total weight of 
a system may be taken to act at the center of gravity.

What is the difference between center of mass and 
center of gravity?

The torque due to the total weight acting at the CG is
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Example 12.10:
A uniform rod of weight W1=35 N is supported at its ends 
as shown in Fig. 12.20. A block of weight W2=10 N is 
placed one-quarter of the distance from one end. What are 
the forces exerted by the supports?

Solution: Since this system is in static equilibrium, the 
torque is zero to any pivot.

N1=W1/2+W2/4=20 N

N2=W1/2+W2*3/4=25 N
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Example 12.12:

A ladder of length L and weight W rests on a rough floor 
and against a frictionless wall, as shown in Fig. 12.22. The 
coefficient of static friction at the floor is µs=0.6. (a) Find the 
maximum angle to the wall such that the ladder does not 
slip, (b) the force exerted by the wall at this θ.

Solution:

Force N1=W, N2=f1=0.6·N1=0.6W

Torque N2·sin(90+θ)=W/2·sin(180-θ)

tan(θ)=1.2, θ=50.2 degree.
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12.7 Dynamic Balance (optional)

(a) dynamic imbalance

(b) static imbalance

(c) both static and dynamic balance
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12.9 Gyroscopic Motion (optional)

See DVD example, Disk 7
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Questions

2. Why does spreading out both arms help to balance on a 
tightrope? Why is holding a long pole even better.

6. If you were given two spheres of the same mass and radius 
that appear identical, could you determine where either is a 
solid or a shell?
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Exercises and Problems

Ch.12: 

Ex.11, 12, 25

Prob. 1, 2, 3, 5, 7,10, 15


