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Chapter 14 Solids and Fluids
Matter is usually classified into one of four states or phases: 
solid, liquid, gas, or plasma.

The distinction between these states is not always clear-cut.

Such complicated behaviors called phase transition will be 
discussed later on.

Shape: A solid has a fixed shape, whereas fluids (liquid 
and gas) have no fixed shape. 

Compressibility: The atoms in a solid or a liquid are quite 
closely packed, which makes them almost incompressible. 
On the other hand, atoms or molecules in gas are far apart, 
thus gases are compressible in general.
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14.1 Density
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At some time in the third century B.C., Archimedes was 
asked to find a way of determining whether or not the gold 
had been mixed with silver, which led him to discover a 
useful concept, density. 

The specific gravity of a substance is the ratio of its density 
to that of water at 4oC, which is 1000 kg/m3=1 g/cm3. 
Specific gravity is a dimensionless quantity.



3

14.2 Elastic Moduli
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A force applied to an object can change its shape. 

The response of a material to a given type of deforming 
force is characterized by an elastic modulus, 

Stress: force per unit area in general

Strain: fractional change in dimension or volume.

Three elastic moduli will be discussed: 

Young’s modulus for solids, the shear modulus for solids, 
and the bulk modulus for solids and fluids.
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Young’s Modulus
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Young’s modulus is a measure of the resistance of a solid to 
a change in its length when a force is applied perpendicular 
to a face.
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Young’s Modulus (II)
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Shear Modulus
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The shear modulus of a solid indicates its resistance to a 
shearing force, which is a force applied tangentially to a 
surface.
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Shear Modulus (II)
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An ideal fluid cannot sustain a shear stress. Although a real 
fluid cannot sustain a permanent shearing force, there are 
tangential forces between adjacent layers in relative motion. 
This produces an internal friction called viscosity.
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Bulk Modulus

The bulk modulus of a solid or a fluid indicates its resistance 
to a change in volume.

The pressure on the cube is defined as the normal fore per 
unit area.
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The negative sign is included to make B a positive number 
since an increase in pressure leads to an decrease in volume.

The inverse of B is called the compressibility, k=1/B.
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Bulk Modulus (II)
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14.3 Pressure in Fluids:
Variation of Pressure with Depth in a Liquid

The pressure on a tiny volume element exerted by the 
surrounding fluid is the same in all direction (equilibrium).

Pressure is a function only of depth and does not depend 
on the shape of the container.
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Variation of Pressure with Depth in a Liquid

How the pressure increases with depth?

The dam must be constructed 
in just the same manner if it 
had to contain a small body of 
water of the same depth.
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Pascal’s Principle

An external pressure applied to a fluid in an enclosed 
container is transmitted undiminished to all parts of the fluid 
and the walls of the container.
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Pressure at the two 
position is the same.
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Measurement of Pressure

A simple way to measure pressure is with a manometer. 
The absolute pressure P is the sum of the atmospheric 
pressure Po and the gauge pressure ρgh.

ghPP o ρ+=

1 atm = 1.013x105 Pa (N/m2)

= 1013 mbar          

= 14.7 psi

= 1033.6 mm H2O

= 760 mm Hg

= 760 Torr
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14.4 Archimede’s Principle

When the solid body is immersed in a liquid, it displaces 
the same volume of liquid. Since the forces exerted by the 
surrounding liquid are unchanged, we arrive at 
Archimedes’ Principle:

Buoyant force = Weight of fluid displaced

FB = ρfVg

Example 14.1 An iceberg with a density of 920 kg/m3 floats 
on an ocean of density 1025 kg/m3. What fraction of its 
volume is submerged?

Sol: Suppose the volume of the iceberg is Vi and that that 
of the submerged portion is Vs.

ρiVi=ρfVs, thus Vs/Vi=920/1025=90%
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Example 14.2:

3kg/m 86009.810003/3.4m/VdensityCrown 

kg 3massCrown 

gV10004.326-9.83forceBuoyant 
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When a 3 kg crown is immersed in water, it has an 
apparent weight of 26 N. What is the density of the crown?

Solution:

The metal may be mostly copper.
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14.5 The Equation of Continuity
The motion of a fluid may be either laminar or turbulent.

Laminar flow may be represented by streamlines. For 
steady flow, streamlines never cross. It is convenient to 
introduce the concept of a tube of flow.

Turbulent flow commonly observes when the fluid velocity 
is large or encounters obstacles, generally involving loss 
of mechanical energy.
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Assumptions for our Present Discussion

1. The fluid is non-viscous: There is no dissipation of 
energy due to internal friction between adjacent layers 
in the liquid.

2. The flow is steady: The velocity and pressure at each 
point are constant in time.

3. The flow is irrotational: A tiny paddle wheel placed in 
the liquid will not rotate. In rotational flow, for example, 
in eddies, the fluid has net angular momentum about a 
given point.
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Equation of Continuity
The velocity of a particle will not be constant along a 
streamline. The density and the cross-sectional area of a 
tube of flow will also change. Since fluid does not leave the 
tube of flow, the mass passing through zone 1 will later 
move to zone 2.

222111   )flowSteady ( vAvA ρρ =
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14.6 Bernoulli’s Equation
Bernoulli’s equation may be derived when the fluid is 
compressible and nonviscous and the flow is steady and
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14.6 Bernoulli’s Equation (II)
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The changes are bought about by the net work done on 
the system, ∆W=∆U+∆K.
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Bernoulli derived this equation in 1738. It applies to all 
points along a streamline in a nonviscous, imcompressible
fluid. It is a disguised form of the work-energy theorem.
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Example 14.1:
Water emerges from a hole at the bottom of a large tank, 
as shown below. If the depth of water is h, what is the 
speed at which the water emerges?

Solution:
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The speed of the emerging fluid is the same as that of a 
particle that falls freely through the same vertical distance. 
This rather surprising result is called Torricelli’s theorem.
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Exercises and Problems

Ch.14: 

Ex. 7, 11

Prob. 2, 3, 4, 7, 8, 9, 10, 11


