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Chapter 16 Mechanical Waves
A wave is a disturbance that travels, or propagates, without the 
transport of matter. 

Examples: sound/ultrasonic wave, EM waves, and earthquake 
wave.

Mechanical waves, such as water waves or sound waves, 
travel within, or on the surface of, a material with elastic 
properties. 

Electromagnetic waves, such as radio, microwave, and  light, 
can propagate through a vacuum.

Matter waves discovered in elementary particles, can display 
wavelike behavior.
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16.1 Wave Characteristics

A solid can sustain both kinds of waves, however, an ideal fluid
(nonviscous) having no well-defined form can only propagate 
longitudinal waves.

In a transverse wave, shown in Fig. 
(a), the displacement of a particles is 
perpendicular to the direction of travel 
of the wave.

In a longitudinal wave, shown in Fig. 
(b), the displacement of the particles 
is along the direction of wave 
propagation.

Seawater, one kind of fluid, can sustain both transverse and 
longitudinal waves. Why?
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Motion of the Medium

The particles of the medium are not carried along with the 
wave. They undergo small displacements about an equilibrium 
position, whereas the wave itself can travel a great distance.

Since the particles of the medium does not travel with the wave,
what does? Energy and momentum.
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16.2 Superposition of Waves
Principle of linear superposition: The total wave function at 
any point is the linear sum of the individual wave function; that is,

NT yyyyy ++++= L321

What is the interference? constructive or destructive.

In all our examples we 
assume that linear 
superposition is valid.
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16.3 Speed of a pulse on a string
The speed at which a pulse propagates depends on the 
properties of the medium.

In the pulse frame from Newton’s
second law we have 
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The mass in segment AB is 
m=2µRθ, where µ is the linear 
mass density. In small angle limit, 
we have

factor Inertia
factor force restoring
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Example 16.1
One end of a string is fixed. It has over a pulley and has a block 
of mass 2.0 kg attached to the other end. The horizontal part 
has a length of 1.6 m and a mass of 20 g. What is the speed of 
a transverse pulse on the string.

Solution:

Tension is simply the weight of the 
block; that is F=19.6 N. The linear 
mass density is µ=0.0125 kg/m. The 
speed is

m/s 6.39
0.0125
19.6
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How guitar works? Same concept.
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16.4 Reflection and Transmission

The reflection of a pulse for different end conditions, fixed or free. 

What is the boundary condition of each case?
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Difference Perspective: 
Superposition of the actual pulse and an imaginary pulse



9

Between the Extreme Cases 
of a Fixed End or a Free End

from light string to heavy string from heavy string to light string

This results in partial reflection and transmission. 

Since the tensions are the same, the relative magnitudes of the 
wave velocities are determined by mass densities.
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16.5 Traveling Waves
In the stationary frame, the pulse has same shape but is moving 
at a velocity v.

In the moving frame the pulse is at rest, so the vertical 
displacement y’ at position x’ is given by some function f(x’) that 
describe the shape of the pulse.
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Plus or minus sign represents forward or backward propagation.
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16.6 Traveling Harmonic Waves
If the source of the waves is a simple harmonic oscillator, the 
function f(x±vt) is sinusoidal and it represents a traveling 
harmonic wave.

The study of harmonic wave is particularly important because a 
disturbance of any shape may be formed by adding together 
suitable harmonic components of different frequencies and 
amplitudes.
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Traveling Harmonic Waves (II)

)sin(),( φω +±= tkxAtxy

frequency :
h wavelengt:

period :
 velocity:

frequencyangular :2
number  wave:2

amplitude :

f

T

fkTv

T

k

A

λ

λωλ
πω
λπ

===
=
=



13

Example 16.3:

[ ]m )4010(sin05.0),( 42
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The equation of a wave is 

Find: (a) the wavelength, the frequency, and the wave velocity; 
(b) the particle velocity and acceleration at x=0.5 m and t=0.05 s.

Solution:

(a) A=0.05, k=5π, ω=20π, φ=-π/4, λ=2/5, f=10, and T=0.1

(b) 

[ ]

[ ] 2
42

2
2

2

42

m/s 140 )4010(sin20

m/s 2.22 )4010(cos

=−−−=

=−−−=

ππ

ππ

π

π

tx
dt

yd

tx
dt

dy

14

16.7 Standing Waves
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Two harmonic waves of equal frequency and amplitude traveling 
through a medium in opposite directions form a standing wave 
pattern.

Nodes: the points of permanent zero displacement.

Antinodes: the points of maximum displacement.
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16.8 Resonant Standing Waves on a String

How to generate an opposite propagating wave with equal 
amplitude and frequency? Reflection.

Why the resonant frequency is discrete? Boundary condition.
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Resonant Standing Waves (II)

What is the minimum frequency allowable on the string? 

If the propagating velocity is the same, then the minimum 
frequency corresponds to the longest wavelength. To satisfy the 
boundary condition, the maximum wavelength is λ=2L.
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Fundamental frequency 
(first harmonic)



17

Resonant Standing Waves: (III) 
Normal modes
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Resonant Standing Waves: (IV) 
Resonant frequencies
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A simple way to set up a resonant standing is shown below. 
One prong of a tuning fork is attached to one end of the string.
The string hangs over a pulley and a weight determine the 
tension in it.

Example: guitar

Question: Which mode will dominate?
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Resonant Standing Waves: (V) 
2D normal modes
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16.9 The Wave Equation
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One can obtain the wave equation by taking the partial 
derivatives of the wave function for the traveling harmonic wave.

with respect to t and x:
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By comparing these derivatives, we see that
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16.10 Energy Transport on a String
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Linear energy density (J/m): 

Average power (J/s): 
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16.11 Velocity of Waves on a String

From Newton’s second law we have 

Small angle approximation: 
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16.3 Speed of a pulse on a string
The speed at which a pulse propagates depends on the 
properties of the medium.

In the pulse frame from Newton’s
second law we have 

R
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The mass in segment AB is 
m=2µRθ, where µ is the linear 
mass density. In small angle limit, 
we have

factor Inertia
factor force restoring
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Exercises and Problems

Ch.16: 

Ex. 10, 11, 19, 21, 35, 39

Prob. 6, 9, 10, 11


