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Chapter 20 Kinetic Theory

Thermodynamics deals with the macroscopically observed 
quantities, such as pressure, volume, and temperature. This is 
the source both of its power and its limitation.

Kinetic theory attempts to provide insight into the underlying 
microscopic basis for the macroscopically observed behavior of 
gases.

The equipartition of energy specifies how the total energy of a 
molecules is divided between translational, rotational, and 
vibrational degrees of freedom.

Kinetic theory and the equipartition of energy can be used to 
predict the values of the specific heats of an ideal gas.
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20.1 The Model of an Ideal Gas

The following assumptions are made about the molecules in a 
gas.

1. Very large number, random motion.

• No internal structure, mainly translational kinetic energy.

• No interaction except during brief elastic collision.

• Diluted gas: the average distance between the molecules is 
much greater than their diameters.
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20.2 The Kinetic Interpretation of Pressure
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20.3 Kinetic Interpretation of Temperature
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For an ideal gas, the absolute temperature is a measure of the 
average translational kinetic energy of the molecules.

kTmv

NkTPV

rms 2
3

2
1

 

2 =∴

=

M

RT

m

kT
vrms

33 ==



5

20.3 Kinetic Interpretation of Temperature (II)

Why the temperature is risen when a gas is rapidly compressed, 
even though there is no influx of heat?

The kinetic theory help us understand this effect by elucidating
the increase of the average speed. The increase average speed 
is manifested as a rise in temperature.

Examples:

Adiabatic quasistatic process: the receding piston causes the 
average speed of molecules to drop.

Adiabatic free expansion: the gas does no work, thus the 
average speed of molecules does not change.
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20.4 Specific Heats of an Ideal Gas
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We see that the internal energy of an ideal gas depends only on 
the temperature. 

When the gas is heated at constant volume, the gas does no 
work, W=0. From the first law we have,

TnCU v∆=∆

In general this equation is restricted to a constant-volume 
process. However, the internal energy of an ideal gas is a 
function only of temperature. Thus, Eq. 20.8 gives the change in 
internal energy of an ideal gas for any process, even if the 
volume is not constant.
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20.4 Specific Heats of an Ideal Gas (II)
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20.5 Equipartition of Energy: Translation

We saw that the average translational kinetic energy of a 
molecular is given by
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Since the molecule can move along three independent 
directions, we say that it has three translation degrees of 
freedom. 

A degree of freedom of a molecule is a way in which it can 
possess kinetic or potential energy.

Each degree of freedom has an average energy 1/2kT.
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20.5 Equipartition of Energy: Rotation
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If the interatomic separation is fixed, the molecule can still 
rotate about three mutually perpendicular axes. 

Two extra rational degrees of freedom is added in. Thus a 
total of five degrees of freedom, so its average energy is
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20.5 Equipartition of Energy: Vibration
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If one relaxes the condition of rigidity, then the atoms in a 
diatomic molecule can vibrate along the line joining them.

Two extra vibrational degrees of freedom is added in. Thus a 
total of seven degrees of freedom, so its average energy is
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20.5 Equipartition of Energy: 
Temperature Relation

The specific heat of hydrogen as a function of temperature.

At what condition the equipartition theory can apply?
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20.5 Equipartition of Energy: 
Problems when applying to Solids

In crystalline solids, the atoms are arranged in a three-
dimensional array, called lattice. Each atom can vibrate three 
manually perpendicular directions, each of which has two 
degrees of freedom. Thus, each atom has a total of six 
degrees of freedom. U=3nRT, C=3R.
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20.6 Maxwell-Boltzmann Distribution of Speeds
The Maxwell-Boltzmann distribution function:
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Exercises and Problems

Ch.20: 

Ex. 21, 23

Prob. 4, 8


