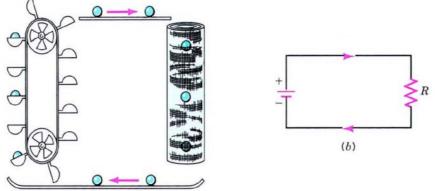
Chapter 28 Direct Current Circuits

The discussion is restricted to direct currents (dc) that flows only in one direction. We first study a steady state case and then go on to a time-varying condition.

When a current flows through a resistors, electrical energy is dissipated. A circuit cannot consist solely of **passive devices**; there must also be some source of electrical energy (**active devices**). Such a device is called a source of *electromotive force*, abbreviated **emf**.

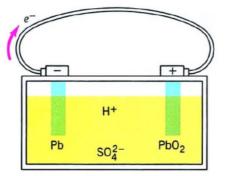
1


Why don't we use a direct current circuit to transmit electric power? (extra bonus)

28.1 Electromotive Force

An emf is the work per unit charge done by the source of emf in moving the charge around *a closed loop*.

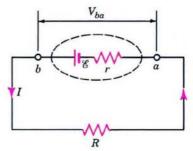
$$\Xi = \frac{W_{ne}}{q}$$


The subscript "ne" emphasizes that the work is done by some nonelectrostatic agent, such as a battery or an electrical generator.

What is the difference between emf and potential difference?

28.1 Electromotive Force: Production of a current

What is the function of the acid solution in the voltaic pile?


$$Pb + SO_{4}^{-} \rightarrow PbSO_{4} + 2e^{-}$$
$$PbO_{2} + 4H^{+} + SO_{4}^{-} + 2e^{-} \rightarrow PbSO_{4} + 2H_{2}O$$

Note that for every electron that leaves the Pb plate, another enters the PbO_2 plate.

28.1 Electromotive Force: Terminal Potential Difference

A real source of emf, such as a battery, has *internal resistance*.

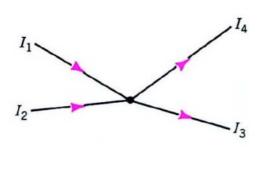
$$V_{ba} = V_b - V_a = \mathbf{E} - Ir$$

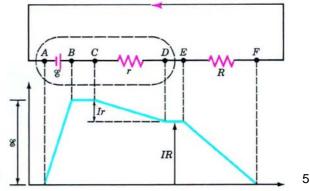
The change in potential is called the **terminal potential difference**.

Unlike the emf, which is a fixed property of the source, the terminal potential difference depends on the current flowing through it.

As a battery ages its internal resistance increases, and so, for a given output current, the terminal potential difference falls.

3


28.2 Kirchhoff's Rules


Kirchhoff's junction rule: the conservation of charge

The algebraic sum of the currents enter or leaving a junction is zero. $\Sigma I=0$

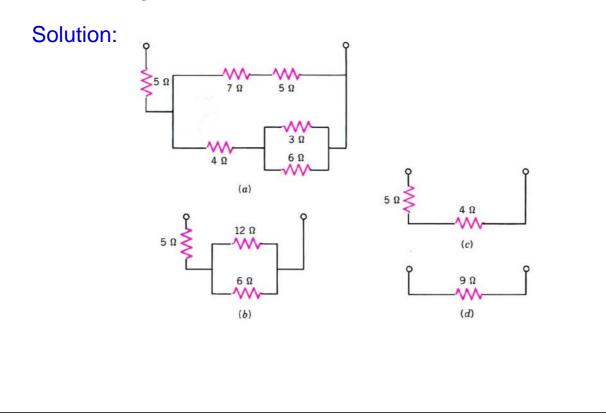
Kirchhoff's loop rule: the conservation of energy

The algebraic sum of the changes in potential around a closed loop is zero. $\Sigma V=0$



28.3 Series and Parallel Connection

Resistors, like capacitors, can be connected in series and in parallel.

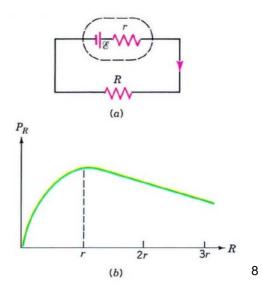

(Series)
(Parallel)

$$R_{eq} = R_1 + R_2 + R_3 + \dots + R_N$$

 $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$

Example 28.1

Find the equivalent resistance of the combination of resistors shown in Fig. 28.10a.



Example 28.3

Whenever a real source of emf supplies power to an external load, some power is also dissipated in the internal resistance. A load resistance R is connected to a source of emf whose internal resistance is r, as in Fig.28.11a. For what value of R will the power supplied to the load be a maximum?

Solution:

$$P = I^{2}R = \frac{\mathsf{E}^{2}R}{(R+r)^{2}}$$
$$\frac{dP}{dR} = \mathsf{E}^{2} \left(\frac{1}{(R+r)^{2}} - \frac{2R}{(R+r)^{3}} \right)$$
$$\frac{dP}{dR} = 0 \implies R = r$$

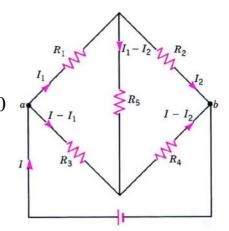
7

Example 28.5

The circuit in Fig. 28.14 has two loops and three sources of emf. (a) determine the currents given that r1=r2=2 ohm, r3=1 ohm, R1=4 ohm, R2=4 ohm, E1=15V, E2=6V, and E3=4V. (b) What is the change in potential Va-Vb? Solution:

Left loop $15-2I_1-4I_1+I_3-4=0$ right loop $4-I_3-3I_2+6-2I_2=0$ junction rule $I_1-I_2+I_3=0$

When analyzing a circuit, the currents may be drawn in arbitrary directions.

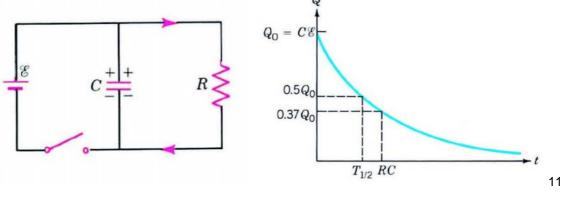

Example 28.6

Five resistors are connected as shown in Fig. 28.15. What is the equivalent resistance between points a and b?

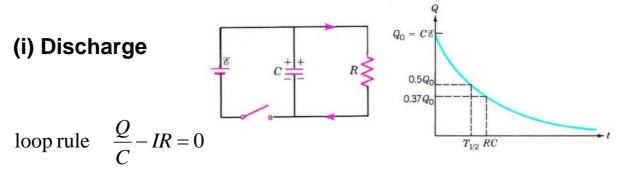
Solution:

Applying the junction rules Left loop $-I_1R_1 - (I_1 - I_2)R_5 + (I - I_1)R_3 = 0$ right loop $+ (I_1 - I_2)R_5 - I_2R_2 + (I - I_2)R_4 = 0$

 $I_{1} = \alpha_{1}I, \qquad I_{2} = \alpha_{2}I$ $V_{b} - V_{a} = -I_{1}R_{1} - I_{2}R_{2} = -(\alpha_{1}R_{1} + \alpha_{2}R_{2})I$


9

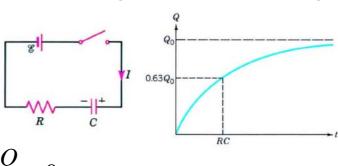
28.4 RC Circuits: Charge and Discharge


When a capacitor is connected directly across the terminals of an ideal battery, the capacitor becomes *charges* instantaneously.

Similarly, if the terminals of a charges capacitor are connected by a wire, the capacitor is *discharged* instantaneously.

(i) Discharge

28.4 RC Circuits: Charge and Discharge



The current *I* is equal to the rate at which the charge *Q* is decreasing; therefore, I = -dQ/dt, the loop rule becomes

$$\frac{dQ}{dt} = -\frac{Q}{RC} \implies Q = Q_0 e^{-t/RC}$$

time constant $\tau = RC$ when $Q = Q_0 e^{-1}$
half - time $T_{1/2} = RC \ln 2$ when $Q = \frac{1}{2}Q_0$

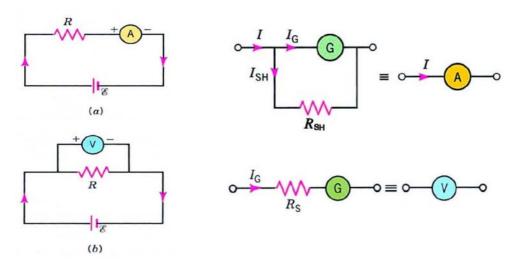
28.4 RC Circuits: Charge and Discharge

(il) Charge

loop rule $\varepsilon - IR - \frac{Q}{C} = 0$

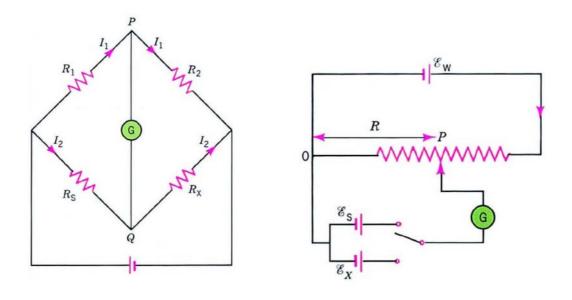
In this circuit, the current *I* increases the charge on the cpacitor, and therefore, I = +dQ/dt, the loop rule becomes

$$C\varepsilon - Q = \frac{dQ}{dt}RC \implies Q = Q_0(1 - e^{-t/RC})$$
$$I = I_0 e^{-t/RC}$$


13

14

28.5 Direct Current Instruments


An instrument that measures current is called an **ammeter**, And one that measures potential difference is called a **voltmeter**. Many of these meters are based on the **galvanometer**. An **ohmmeter** is an instrument designed to measure resistance.

A commercial meter, which uses to measure current, voltage, resistance, and capacitance, is called **multimeter**.

28.5 Direct Current Instruments (II)

Wheatstone Bridge & Potentiometer

15

Exercises and Problems

Ch.28: Ex. 25, 42 Prob. 1, 2, 4, 7, 12, 13, 15