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Chapter 34 Maxwell’s Equations; 
Electromagnetic Waves

Maxwell, a young admirer of Faraday, believed that the 
closeness of these two numbers, speed of light and the 
inverse square root of ε0 and µ0, was more than just 
coincidence and decide to develop Faraday’s hypothesis.

In 1865, he predicted the existence of electromagnetic waves 
that propagate at the speed of light. 

In 1845, Faraday demonstrated that a magnetic field 
produces a measurable effect on a beam of light. This 
prompted him to speculate that light involves oscillation of 
electric and magnetic field lines, but his limited mathematical 
ability prevent him from pursuing this idea.
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34.1 Displacement Current

The inadequacy of the Ampere’s law does not give 
consistent answers for the following two choices.

Maxwell proposed that a new type of current, which he called 
displacement current, ID, can be associated with the 
nonconductor between the plates. Thus Ampere’s law should 
be written as 
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34.1 Displacement Current (II)

Where does the displacement current come from? The 
change of the electric flux with time.

Consider a parallel plate capacitor 
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With Maxwell’s modification, Ampere’s law becomes
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Example 34.1
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Use the Ampere-Maxwell law to find the magnetic field 
between the circular plates of a parallel-plate capacitor that is 
charging. The radius of the plates is R. Ignore the fringing field.

Solution:
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34.2 Maxwell’s Equations
With the inclusion of Maxwell’s contribution, we now display 
all the fundamental equations in electromagnetism. There 
are just four:
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24.2 Gauss’s Law
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How much is the flux for a spherical Gaussian surface around 
a point charge?

The total flux through this closed
Gaussian surface is 

The net flux through a closed surface equals 1/ε0 times the 
net charge enclosed by the surface.

Can we prove the above statement for arbitrary closed shape?
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29.1 The Magnetic Field
When iron filings are sprinkled around a bar magnet, they 
form a characteristic pattern that shows how the influence of 
the magnet spreads to the surrounding space.

The magnetic field, B, at a point along the tangent to a field 
line. The direction of B is that of the force on the north pole of 
a bar magnet, or the direction in which a compass needle 
points. The strength of the field is proportional to the number 
of lines passing through a unit area normal to the field (flux 
density). 
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29.1 The Magnetic Field: monopole?
If one try to isolate the poles by cutting the magnetic, a 
curious thing happens: One obtains two magnets. No matter 
how thinly the magnet is sliced, each fragment always have 
two poles. Even down to the atomic level, no one has found 
an isolated magnetic pole, called a monopole. Thus 
magnetic field lines form closed loops.

Outside a magnetic the lines emerge from the north pole 
and enter the south pole; within the magnet they are 
directed from the south pole to the north pole. The dots
represents the tip of an arrow coming toward you. The 
cross represents the tail of an arrow moving away.
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31.3 Faraday’s Law and Lenz’s Law
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The generation of an electric current in a circuit implies the 
existence of an emf. Faraday’s statement is nowadays 
expressed in terms of magnetic flux: 

The derivative of magnetic flux is 
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The induced emf along any closed path is proportional to the 
rate of change of magnetic flux through the area bounded by 
the path.
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Faraday’s Law
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The emf is always opposite to the sign of the change in flux 
∆Φ. This feature can be incorporated into Faraday’s law by 
including a negative sign.

The modern statement of Faraday’s law of electromagnetic 
induction is

Suppose that the loop is replaced by a coil with N turn. The 
net emf induced in a coil with N turns is
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30.4 Ampere’s Law
Ampere had several objections to the work of Biot and 
Sarvart. For example, accuracy and assumption.

He pursued his own line of experimental and theoretical 
research and obtained a different relation, now called 
Ampere’s law, between a current and the magnetic field it 
produces.

Although Ampere’s law can be derived from the Biot-Sarvart
expression for dB, we will not do so. Instead, we can make it 
plausible by considering the field due to an infinite straight 
wire.

We know that the field lines are concentric circles for a 
infinite long, straight current-carrying wire. 

B(2πr)=µ0I
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30.4 Ampere’s Law (II)
B(2πr)=µ0I.  We may interpret it as follows: 2πr is the length 
of a circular path around the wire, B is the component of the 
magnetic field tangential to the path, and I is the current 
through the area bounded by the path. 

Ampere generalized this result to the paths and wires of any 
shape.
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34.8 Derivation of the Wave Equation
Mathematical manipulation of Faraday’s law and Ampere-
Maxwell law leads directly to a wave equation for the electric 
and magnetic field.
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34.8 Derivation of the Wave Equation (II)
We will assume E and B vary in a certain way, consistent 
with Maxwell equations, and show that electromagnetic wave 
are a consequence of the application of Faraday’s law and 
Ampere-Maxwell law.
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34.8 Derivation of the Wave Equation (III)

By taking the appropriate derivatives of these two equations, 
it is straightforward to obtain Maxwell’s wave equation.
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34.3 Electromagnetic Waves
In Chapter 16, we saw that a wave traveling along the x axis 
with a wave speed v satisfies the wave equation:
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From Faraday’s law and Ampere-Maxell law, we can derive 
the following equations:
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On comparing these with standard wave equation, we see 
that the wave speed is
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34.3 Electromagnetic Waves (II)
The simplest solution of the wave equations are plane wave
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The electric E and magnetic B are in phase and are 
perpendicular to each other and also perpendicular to the 
direction of propagation.
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34.3 Electromagnetic Waves (III)
One representation of an electromagnetic wave traveling 
along the +x direction.

A representation of a plane electromagnetic wave in which 
the variation in the field strengths is depicted by the density 
of the field lines.
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34.4 Energy Transport and the Poynting Vector

The energy density of the electric and magnetic fields in free 
space are given.

The total energy density is therefore
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Energy Transport and the Poynting Vector (II)
Consider two planes, each of area A, a distance dx apart, 
and normal to the direction of propagation of the wave. The 
total energy in the volume between the planes is dU=uAdx.

The rate at which this energy through a unit area normal to 
the direction of propagation is

The vector form of the Poynting vector is
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Energy Transport and the Poynting Vector (III)
The magnitude of S is the intensity, that is instantaneous 
power that across a unit area normal to the direction of the 
propagation. 

The direction of S is the direction of the energy flow. 

In an electromagnetic wave, the magnitude of S fluctuates 
rapidly in time. Thus a more useful quantity, the average 
intensity, is

The quantity Sav, measured in W/m2 is the average power 
incident per unit area normal to the direction of propagation.
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Example 34.2
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A radio station transmits a 10-kW signal at a frequency of 100 
MHz. For simplicity, assume that it radiates as a point source. 
At a distance of 1 km from the antenna, find: (a) the amplitude 
of the electric and magnetic field strengths, and (b) the energy
incident normally on a square plate of side 10 cm in 5 min.

Solution:
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34.5 Momentum and Radiation Pressure
An electromagnetic wave transports linear momentum. 

We state, without proof, that the linear momentum carried by 
an electromagnetic wave is related the energy it transport 
according to
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If surface is perfectly reflecting, the momentum change of 
the wave is double, consequently, the momentum imparted 
to the surface is also doubled.

The force exerted by an electromagnetic wave on a surface 
may be related to the Poynting vector
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34.5 Momentum and Radiation Pressure (II)
The radiation pressure at normal incident is
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Examples: (a) the tail of comet, (b) A “solar sail”
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34.6 Hertz’s Experiment
When Maxwell’s work was published in 1867 it did not 
receive immediate acceptance. It is Hertz who conclusively 
demonstrated the existence of electromagnetic wave.
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34.7 The Electromagnetic Spectrum
Electromagnetic waves span an immerse range of 
frequencies, from very long wavelength to extremely high 
energy r-way with frequency 1023 Hz. There is no theoretical 
limit to the high end.
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Mainly Heating Effect in Micro/mm-Wave Spectrum
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Windows for Research and Application Opportunities
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Spectrum to Be Exploited
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Exercises and Problems

Ch.34: 

Ex. 8, 12, 14, 17

Prob. 1, 6, 8, 9, 11


