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Chapter 41 Wave Mechanics

More findings: Sommerfeld refined Bohr’s theory by 
incorporating special relativity and the possibility of elliptical 
orbits. With the addition of two new quantum numbers, the 
Bohr-Sommerfeld theory accounted for many features of 
spectra and showed how the periodic table is built up in a 
systematic way. 

Partly success: Bohr’s theory was successful in explaining 
the spectrum of hydrogen. However, it could not predict the 
relative intensities of spectral lines or explain why, with 
increased resolution, some lines were found to consist of two 
or more finer lines. 

Proper foundation: The rules that were used had no proper 
foundation and had limited explanatory power. Radical reform 
was needed in quantum theory. 
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41.1 De Broglie Waves
De Broglie put forward an astounding proposition that 
“nature is symmetrical”.

Einstein had shown that a complete description of cavity 
radiation requires both the particle and wave aspects of 
cavity radiation.

De Broglie guessed that a similar wave-particle duality might 
apply to material particles. That is, matter may also display 
wave nature.

He used a combination of quantum theory and special 
relativity to propose that the wavelength, λ, associated with 
a particle is related to its linear momentum, p=mv, by

p
h

=λ
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41.1 De Broglie Waves (II)
The physical significance of the “matter wave” was not clear, 
but he gained courage from the following demonstration. In 
the Bohr’s model, the angular momentum of the electron 
is quantized:

This looks like the condition for a standing wave!

Stationary orbits: Only those orbits that can fit an integral 
number of wavelengths around the circumference are 
allowed.
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41.2 Electron Diffraction

Electrons were produced by a heated filament, accelerated 
by  a potential difference, V, and then directed at the Ni 
target.

X-ray diffraction like: If the electrons had interacted with the 
atoms on a one-to-one basis, this would have produced 
random scattering. The pronounced reflections implied that 
the electrons were interacting with an array of atoms.

Davisson studied the scattering of 
electrons off nickel surface, reported 
the curious result that the reflected 
intensity depends on the orientation of 
the sample. Why? Matter wave.
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41.2 Electron Diffraction (II)

When a particle of mass m and 
charge q is accelerated from rest 
by a potential difference V, its 
kinetic energy is given by 
K=p2/2m=qV. The de Broglie
wavelength takes the form
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41.2 Electron Diffraction (III)

Where D is the spacing between 
atoms, which in the case of nickel is 
0.215 nm. 

Wavelike behavior is exhibited by all 
elementary particles.

A diffraction pattern 
produced by 0.07-eV 
neutrons passing 
through a polycrystal-
line sample of iron.

λφ nD =sin

By an analysis similar to that for X-ray, 
it is found that the angular positions of 
the diffraction maxima are given by
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Example 41.1
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What is the de Broglie wavelength of (a) an electron 
accelerated from rest by a potential difference of 54 V, 
and (b) a 10 g bullet moving at 400 m/s?

Solution:

There is no chance of observing wave phenomena, such 
as diffraction, with macroscopic objects.
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41.3 Schrodinger’s Equation
When Schrodinger realized that Einstein took the matter wave 
seriously, he decided to look for an equation to describe these 
matter waves.
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The derivation of Schrodinger’s equation is not straight forward. 
A simplified discussion can be based on the wave equation.
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41.3 Schrodinger’s Equation (II)

This is the one-dimension time-independent Schrodinger
wave equation. The wave function ψ(x) represents stationary 
states of an atomic system for which E is constant in time.
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How can a continuous description lead to discrete quantities, 
such as the energy level of the hydrogen atom? 

The boundary condition.
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41.4 The Wave Function
Schroding’s success in tackling several problems confirmed 
that the wave mechanics was an important advance. But how 
was the “wave associated with the particle” to be interpreted. 

De Broglie suggested that the wave might represent the 
particle itself. Schrodinger believed that a particle is really a 
group of waves, a wave packet. 

Einstein though the intensity of a light wave at a given point is 
a measure of the number of photons that arrive at the point. In 
other word, the wave function for the electromagnetic field 
determines the probability of finding a photon.

By analogy, Born suggested that the square of the wave 
function tells us the probability per unit volume of finding the
particle. Born’s interpretation of the wave function has now 
been generally accepted.
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41.4 The Wave Function (II)
The square of the wave function tells us the probability per 
unit volume of finding the particle.

dV  volumea with particle a finding ofy probabilit2 =dVψ

The quantity ψ2 is called the probability density.

Normalization: Since the particle has to be found somewhere, 
the sum of all the probabilities along the x axis has to be one:

1)(2 =∫
∞

∞−
dxxψ

A wave function that satisfies this condition is said to be 
normalized.
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41.4 The Wave Function (III)
The classical physics and special relativity are based on the 
principle of determinism.

Quantum mechanics correctly predicts average value of 
physical quantities, not the result of individual measurements.

diffraction interference
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41.5 Application of Wave Mechanics:
Particle is a box

Consider a particle of mass m that 
bounces back and forth in a one-
dimensional box of side L. The 
potential U is zero within the box and 
infinite at the wall.
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41.5 Application of Wave Mechanics:
Particle is a box (II)

The wave length has to satisfy standing wave condition

nLLnk /2     ,//2 === λπλπ
From de Broglie’s equation, we can derive the momentum 
and find out the velocity.
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The particle’s energy, which is purely kinetic, K=1/2mv2, is 
thus also quantized.
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41.5 Application of Wave Mechanics:
Particle is a box (III)

The quantized energy level:

The first three wave functions and probability densities
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Example 41.2
An electron is trapped within an infinite potential well of length 
0.1 nm. What are the first three energy levels?

Solution:
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Example 41.3
Consider a 10-7 kg dust particle confined to a 1-cm box. (a) 
What is the minimum speed possible? (b) What is the 
quantum number n if the particle’s speed is 10-3 mm/s?

Solution:

The corresponding principle resolves the zero-energy 
and uniform probability problems.
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41.5 Application of Wave Mechanics:
Finite potential well

Consider a particle of mass m that 
bounces back and forth in a one 
dimensional box of side L. The potential 
U is zero within the box and infinite at 
the wall.
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41.5 Application of Wave Mechanics:
Barrier Penetration: Tunneling

When a particle with energy E encounters a potential 
energy barrier of height U (>E), what would happens?

Partly reflected and partly transmitted (tunneling).

Can we reproduce such effect in classical electromagnetism?

Examples: Tunnel diode, Josepheson junction, and 
scanning tunneling electron microscope.
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41.6 Heisenberg Uncertainty Principle

The wavelength of a wave can be specified precisely only if 
the wave extends over many cycles. But if a matter wave is 
spread out in space, the position of the particle is poorly 
defined. Thus to reduce the uncertainty in position of the 
particle, ∆x, one can propose many wave length to form a 
reasonably well-localized wave-packet.
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41.6 Heisenberg Uncertainty Principle (II)

From the de Broglie matter wave relation, we see that a 
spread in wavelengths, ∆λ, means that the wave packet 
involves a spread in momentum, ∆p. According to the 
Heisenberg uncertainty principle, the uncertainties in 
position and in momentum are related by

hpx ≥∆∆

It is not possible to measure both the position of a particle 
and its linear momentum simultaneously to arbitrary 
precision.

For a wave packet, the uncertainty relation is an intrinsic 
property, independent of the measuring apparatus.
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41.6 Heisenberg Uncertainty Principle (III)
Another derivation 

Consider the electron diffraction by a 
single slit. 

We know that the position of the first 
minimum is given by

hpy y ≈∆∆⇒
A finer slit would locate the particle more precisely but lead 
to a wider diffraction pattern---that is, to a greater 
uncertainty in the transverse momentum.
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41.6 Heisenberg Uncertainty Principle (IV)
other pair

The Heisenberg uncertainty principle also applies to other 
pairs of variables.

hpzhpyhpx zyx ≥∆∆≥∆∆≥∆∆          ,       ,

To minimize the uncertainty in measuring the energy of a 
system, one must observe it for as long as possible. 

The energy of a system can fluctuate from the value set by 
the conservation of energy---provided the fluctuation occurs 
within the time interval specified by above Eq.

htE ≥∆∆
Among the most important are energy and time:
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41.7 Wave-Particle Duality

Let’s reconsider Young’s double-slit experiment, but now 
conducted with electrons. 

Let us say that ψ1 is the wave function that applies to the 
passage of an electron through slit S1 whereas ψ2 applies 
to slit S2. When both slits are open, the distribution will 
display the familiar interference fringes.
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41.7 Wave-Particle Duality (II)

Bohr noted that any given experiment reveals either the 
wave aspect or the particle aspect. 

Complementarily principle: A complete description of 
matter and radiation requires both particle and wave 
aspects.
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Exercises and Problems

Ch.41: 

Ex. 13, 19, 27, 28

Prob. 1, 4, 5, 9, 11


