Chapter 4 Network Analysis

4.0 Introduction

©The KVL and KCL in circuit theory are no longer valid.
$\mathbf{\Delta U s e}$ the Maxwell's equations to solve all "microwave circuits:?
Field Problem
\mathbf{E}, \mathbf{H} (Vectors)
Circuit Problem
V, I (Scalars)
(Equivalent quantities)

Agilent 8510 with head modules

4.1 Impedance, Equivalent Voltage and Current

Equivalent voltage and current are valid only for TEM lines

For non-TEM lines, equivalent voltage and current are:
(a)Not unique but useful for an engineering approach,
(b)For certain mode only,
(c) $V I^{*}=$ power flow of the mode, and
(d) The characteristic impedance is defined as $Z_{0}=V / I$

The Concept of Impedances

An important link between EM field and circuit theory
(1) $\eta=\sqrt{\mu / \varepsilon}=$ Intrinsic impedance of a medium. also the wave impedance of a plane wave.
(2) $Z_{\mathrm{w}}=$ Wave impedance (TE, TM, or TEM wave) a characteristic for a particular mode, e.g.the TE_{10} mode.
(3) $Z_{O}=$ Characteristic impedance, the ratio of V and I for a traveling wave on a transmission line $\left(I_{0}^{-}=0, V_{0}^{-}=0, V=V_{0}^{+}, I=I_{0}^{+}\right)$

Example:

Application of Waveguide Impedance

Find the reflection of a TE_{10} wave incident on the interface from $z<0$. Let a $=22.86 \mathrm{~mm}, b=10.16 \mathrm{~mm}$, and $f=10 \mathrm{GHz} . z<0, \varepsilon_{r 1}=1 ; z>0, \varepsilon_{r 2}=2.54$

$$
\text { Sol }: \beta_{a i r}=\sqrt{k_{0}^{2}-\left(\frac{\pi}{a}\right)^{2}}=158.0 m^{-1}
$$

$$
\beta_{\text {die }}=\sqrt{\varepsilon_{r} k_{0}^{2}-\left(\frac{\pi}{a}\right)^{2}}=304.1 m^{-1}
$$

$$
Z_{\text {Wair }}=\frac{k_{0} \eta_{0}}{\beta_{\text {air }}}=\frac{209.4 \times 377}{158}=500 \Omega
$$

$$
Z_{\mathrm{Wdie}}=\frac{k_{d} \eta_{d}}{\beta_{\text {die }}}=\frac{209.4 \times 377}{304.1}=259.6 \Omega
$$

Note: The calculation of Γ is

$$
\Gamma=\frac{Z_{\text {Wdie }}-Z_{\text {Wair }}}{Z_{\text {wdie }}+Z_{\text {Wair }}}=\frac{259.6-500}{259.6+500}=-0.316
$$ valid only when the two waveguides have identical cross section dimensions.

One-Port Network

Δ Complex power delivered to the network:
$P=\frac{1}{2} \oiint \underline{E} \times \underline{H}^{*} \cdot d s=P_{\ell}+2 j \omega\left(W_{m}-W_{e}\right)$

$W_{m}, W_{e}=$ stored magnetic and electric energy
© Input impedance

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{in}} & =\frac{V}{I}=\frac{V I^{*}}{|I|^{2}}=\frac{2 P}{|I|^{2}}=\frac{P_{\ell}+2 j \omega\left(W_{m}-W_{e}\right)}{\frac{1}{2}|I|^{2}} \\
& =R+j X, \quad X=\frac{4 \omega\left(W_{m}-W_{e}\right)}{|I|^{2}}\left\{\begin{array}{l}
X>0, W_{m}>W_{e}, \text { inductive load } \\
X<0, W_{m}<W_{e}, \text { capactive load }
\end{array}\right.
\end{aligned}
$$

Even and Odd Properties of $Z_{\text {in }}(\omega)$ and $\Gamma(\omega)$

$\nu(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} V(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} V(-\omega) e^{-i \omega x} d \omega$
$v^{*}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} V^{*}(\omega) e^{-i \alpha x} d \omega$
Since $v(t)$ is real $\left(v(t)=v^{*}(t)\right), V^{*}(\omega)=V(-\omega)$

$\operatorname{Re}[V(\omega)]=\operatorname{Re}[V(-\omega)], \operatorname{Im}[V(\omega)]=-\operatorname{Im}[V(-\omega)]$
$\operatorname{Re}[I(\omega)]=\operatorname{Re}[I(-\omega)], \operatorname{Im}[I(\omega)]=-\operatorname{Im}[I(-\omega)] \Gamma(\omega)=\frac{Z_{i n}(\omega)-Z_{0}}{Z_{i n}(\omega)+Z_{0}}=\frac{R(\omega)-Z_{0}+j X(\omega)}{R(\omega)+Z_{0}+j X(\omega)}$
$Z_{i n}(\omega)=\frac{V(\omega)}{I(\omega)}$
$\Gamma(-\omega)=\frac{Z_{\text {in }}(-\omega)-Z_{0}}{Z_{i n}(-\omega)+Z_{0}}=\frac{R(-\omega)-Z_{0}+j X(-\omega)}{R(-\omega)+Z_{0}+j X(-\omega)}$

$$
=\frac{R(\omega)-Z_{0}-j X(\omega)}{R(\omega)+Z_{0}-j X(\omega)}=\Gamma^{*}(\omega)
$$

$Z_{i n}(-\omega)=\frac{V(-\omega)}{I(-\omega)}=\frac{V^{*}(\omega)}{I^{*}(\omega)}=Z_{\text {in }}{ }^{*}(\omega)$

N-Port Microwave Network

(1) Each ports has $V_{k}^{+}, V_{k}^{-}, I_{k}^{+}, I_{k}^{-}, k=1,2, \ldots, N$, defined at t_{k} plane.
(2) There could be many modes near each transmission line-network junction.
(3) Each t_{k} plane is chosen at a plane with a suitable distance away from the junction ensuring no higher order mode at t_{k}.

4.2 Z-Matrix of an N-port Network

$V_{k}=V_{k}^{+}+V_{k}^{-}, k=1,2, \ldots, N$ at t_{k} plane
$I_{k}=I_{k}{ }^{+}+I_{k}{ }^{-}$
$V_{k}=$ total voltage at port k.
$I_{k}=$ total current at port k.

For an arbitary N-port linear network: $Z_{i j}=\left.\frac{V_{i}}{I_{j}}\right|_{I_{k}=0, k \neq j}$
$=$ transfer impedance between ports i and j when all other ports are open circuited.

Example $4.3 Z_{i j}$ of a two-port

Find $Z_{i j}$ of the following two-port network: $Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{L=0}=Z_{A}+Z_{C}$,

$Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{J_{1}=0}=\frac{V_{2}}{I_{2}} \frac{Z_{C}}{Z_{B}+Z_{C}}=Z_{C}$
$Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}=Z_{C}=Z_{12}$,

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

© In other words, a two-port specified by $[Z]$ can be representes by

Y-Matrix of an N-Port Network

$$
Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}=Z_{B}+Z_{C}
$$

Example $Y_{i j}$ of a Two-Port Network

Find $Y_{i j}$ of the following two-port network:

$$
Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=Y_{a}+Y_{b},
$$

$$
Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}=Y_{c}+Y_{b}
$$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

$$
Y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0}=-Y_{b}
$$

Δ In other words, a two-port specified by $[Y]$ can be representes by

Reciprocal Network

If there is no active device or anisotropic materials, like BJT, FET, ferrite and plasma, inside the network, one can use the reciprocity theorem to prove that

$$
Z_{i j}=Z_{j i} \text { and } Y_{i j}=Y_{j i} \text {, i.e. }[Z] \text { and }[Y] \text { are symmetric matrices. }
$$

Lossless Network

$P_{a v}=\frac{1}{2}[V]^{t}[I]^{*}=\frac{1}{2}([Z][I])^{t}[I]^{*}=\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} I_{m} Z_{m n} I_{n}^{*}$
For $N=2, P_{a v}=\left(Z_{11} I_{1} I_{1}^{*}+Z_{12} I_{1} I_{2}^{*}+Z_{21} I_{2} I_{1}^{*}+Z_{22} I_{2} I_{2}^{*}\right) / 2$
$\left[\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ V_{N}\end{array}\right]=\left[\begin{array}{cccc}Z_{11} & Z_{12} & \cdots & Z_{1 N} \\ Z_{21} & & & \vdots \\ \vdots & & & \vdots \\ Z_{N 1} & \cdots & \cdots & Z_{N N}\end{array}\right]\left[\begin{array}{c}I_{1} \\ I_{2} \\ \vdots \\ I_{N}\end{array}\right]$.
\triangleright Note that the property of $[Z]$ is neither dependent on $[I]$ nor on $[V]$
\triangleright The net real power delivered to the network is zero. Thus, $\operatorname{Re}\left[P_{a v}\right]=0$ for all possible combinations.

1. $I_{n} \neq 0, I_{m}=0, m \neq n, \operatorname{Re}\left\{I_{n} Z_{n n} I_{n}^{*}\right\}=\left|I_{n}\right|^{2} \operatorname{Re}\left\{Z_{n n}\right\}=0 \Rightarrow \operatorname{Re}\left\{Z_{n n}\right\}=0$
2. $I_{m} \neq 0, I_{n} \neq 0, I_{k}=0, k \neq m$ or n,
$\operatorname{Re}\left[\left(I_{m} I_{n}{ }^{*}+I_{m}{ }^{*} I_{n}\right) Z_{m n}\right]=0 \Rightarrow \operatorname{Re}\left\{Z_{m n}\right\}=0$.
\Rightarrow Lossless network $\operatorname{Re}\left\{Z_{m n}\right\}=0, \forall m, n$

4.3 The Scattering Parameter Matrix

V_{n}^{+}and V_{n}^{-}are the amplitudes of incident and reflected voltage waves, respectively,on port n.

$$
S_{i j}=\left.\frac{V_{i}^{-}}{V_{j}^{+}}\right|_{V_{k}^{+}=0, k \neq j} \quad S_{i j}, \text { is determined by driving port } j \text { with an incident voltage wave }
$$

© When $S_{i j}$ is evaluated, the incident voltage waves on all ports expects port j are set to zero, which means that all other ports should be terminated in matched load to avoid reflections.

Example 4.4 Evaluation of S-parameters

Find the S-parameters of the twoport. If the circuit is a $3-\mathrm{dB}$ attenu-

$$
\text { Condition \# 2: } \quad S_{21}=\left.\frac{V_{2}^{-}}{V_{1}^{+}}\right|_{V_{2}^{+}=0}=\left.\frac{V_{2}}{V_{1}}\right|_{V_{2}^{+}=0, V_{1}^{-}=0}
$$

$$
R_{1}+R_{2} / /\left(Z_{0}+R_{1}\right) Z_{0}+R_{1} \quad \sqrt{2}
$$

$$
\begin{aligned}
& \text { ator, what are the values of } R_{1} \text { and } \frac{R_{2} / /\left(Z_{0}+R_{1}\right)}{Z_{0}} \frac{Z_{0}}{Z_{0}+R_{1}}=\frac{R_{2}\left(Z_{0}+R_{1}\right)}{Z_{0}+R_{1}+R_{2}} \frac{1}{Z_{0}+R_{1}} \equiv \frac{1}{\sqrt{2}} \\
& R_{2} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
Z_{\text {in }}^{(1)}= & R_{1}+R_{2} / /\left(Z_{0}+R_{1}\right) \\
& =R_{1}+\frac{R_{2}\left(Z_{0}+R_{1}\right)}{Z_{0}+R_{1}+R_{2}} \equiv Z_{0}
\end{aligned}
$$

Condition\#1: $S_{11}=S_{22}=0$
$\left(Z_{0}-R_{1}\right)\left(Z_{0}+R_{1}+R_{2}\right)=R_{2}\left(Z_{0}+R_{1}\right)$

$$
Z_{0}+R_{1}+R_{2}=\sqrt{2} R_{2} \Rightarrow Z_{0}+R_{1}=(\sqrt{2}-1) R_{2} \equiv x R_{2}
$$

$$
Z_{\text {in }}^{(1)}=R_{1}+R_{2} / /\left(Z_{0}+R_{1}\right) \quad R_{1}\left(R_{1}+2 R_{2}\right)=x^{2} R_{2}^{2}+R_{1}^{2}-2 x R_{1} R_{2}
$$

$$
x^{2} R_{2}-2(x+1) R_{1}=0
$$

$$
R_{1}=\frac{x^{2}}{2(x+1)} R_{2} \Rightarrow Z_{0}+\frac{x^{2}}{2(x+1)} R_{2}=x R_{2}
$$

$$
Z_{0}^{2}-R_{1}\left(R_{1}+R_{2}\right)=R_{1} R_{2}
$$

$$
R_{2}=\frac{2(x+1)}{x(x+2)} Z_{0}=2 \sqrt{2} Z_{0}=141.42 \Omega
$$

$$
Z_{0}^{2}=R_{1}\left(R_{1}+2 R_{2}\right)
$$

$$
R_{1}=\frac{x^{2}}{2(x+1)} R_{2}=\frac{x}{x+2} Z_{0}=\frac{\sqrt{2}-1}{\sqrt{2}+1} Z_{0}=8.579 \Omega
$$

Conversion Between Network Parameters

Determine [S] from [Z] and [Y] Matrices

$Z_{0 n}$: characteristic impedance of port n.
All the ports are identical and $Z_{0 n}=1$ for convenience.
$V_{n}=V_{n}^{+}+V_{n}^{-}$
$I_{n}=I_{n}^{+}-I_{n}^{-}=V_{n}^{+}-V_{n}^{-}$
$[Z][I]=[Z]\left[V^{+}\right]-[Z]\left[V^{-}\right]=[V]$
$[V]=\left[V^{+}\right]+\left[V^{-}\right]$

which can be written as
$([Z]+[U])\left[V^{-}\right]=([Z]-[U])\left[V^{+}\right]$
$[S] \equiv([Z]+[U])^{-1}([Z]-[U])$
where $[U]=$ identity matrix

Example 4.5 Properties of S-Parameters

Determine if the network is reciprocal or lossless.
What is the reflection coefficient at port 1 if port 2 is shor-circuited?

$$
[S]=\left[\begin{array}{cc}
0.1 & j 0.8 \\
j 0.8 & 0.1
\end{array}\right]
$$

Sol: (1) $[S]^{T}=[S]$ symmetric matrix \Leftrightarrow reciprocal network,
(2) $[S]^{T}[S]^{*} \neq[U] \Leftrightarrow$ It is not a lossless network.
(3) If port 2 is short-circuited,

$$
\begin{aligned}
& V_{2}^{-}=S_{21} V_{1}^{+}+S_{22} V_{2}^{+}=-V_{2}^{+} \Rightarrow V_{2}^{+}=-S_{21} /\left(1+S_{22}\right) V_{1}^{+} \\
& V_{1}^{-}=S_{11} V_{1}^{+}+S_{12} V_{2}^{+}=\left[S_{11}-S_{12} S_{21} /\left(1+S_{22}\right)\right] V_{1}^{+} \\
& \Gamma=\frac{V_{1}^{-}}{V_{1}^{+}}=S_{11}-\frac{S_{12} S_{21}}{1+S_{22}}=0.1-\frac{-0.64}{1+0.1} \cong 0.682 e^{j 0^{\circ}}
\end{aligned}
$$

Network Parameters for
 Reciprocal \& Lossless Networks

(1) $[Y],[Z]$ are symmetric matrices for reciprocal networks and a purely imaginary for lossless networks.
(2) $[S]$ is a symmetric matrix for reciprocal networks and a unitary matrix for lossless networks.
$\boldsymbol{\Delta}$ What is a unitary matrix ? If $[S]^{\mathrm{T}}[S]^{*}=[U]$, where $[S]=\left[\begin{array}{ll}S_{11} & S_{12} \\ S_{21} & S_{22}\end{array}\right]$, i.e. $[S]^{T}[S]^{*}=\left[\begin{array}{ll}S_{11} & S_{21} \\ S_{12} & S_{22}\end{array}\right]\left[\begin{array}{ll}S_{11}^{*} & S_{12}^{*} \\ S_{21}^{*} & S_{22}^{*}\end{array}\right]=\left[\begin{array}{cc}\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2} & S_{11} S_{12}^{*}+S_{21} S_{22}^{*} \\ S_{11}^{*} S_{12}+S_{21}^{*} S_{22} & \left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\boldsymbol{\Delta}\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}=1$ indicates that the energy is conserved.
$\boldsymbol{\Delta} S_{11}^{*} S_{12}+S_{22} S_{21}^{*}=0$ means the different columns of $[S]$ are orthogonal. ${ }_{18}$

Shift in Reference Planes

Reference planes should be defined before a network is characterized. The planes can be shifted.

Generalized Scattering Parameters

$$
\begin{aligned}
& a_{n}=\frac{V_{n}^{+}}{\sqrt{Z_{0 n}}} \\
& b_{n}=\frac{V_{n}^{-}}{\sqrt{Z_{0 n}}} \\
& V_{n}=V_{n}^{+}+V_{n}^{-}=\sqrt{Z_{0 n}}\left(a_{n}+b_{n}\right) \\
& I_{n}=\frac{V_{n}^{+}-V_{n}^{-}}{Z_{0 n}}=\frac{\left(a_{n}-b_{n}\right)}{\sqrt{Z_{0 n}}}
\end{aligned}
$$

4.4 The Transmission (T or $A B C D$) Matrix

(1)Definition of the $A B C D$ matrix is based on the total port voltage and current.
(2)The direction of I_{2} is different from those of $[Y]$ and $[Z]$ matrices.

For a cascade of two two-port networks:

The result can be applied to a cascade of N two-port networks.

The $A B C D$ Parameters of Some Useful Two-Ports
$\left\{\begin{array}{l}V_{2}=Z_{21} I_{1}-Z_{22} I_{2} \\ V_{1}=Z_{11} I_{1}-Z_{12} I_{2}\end{array} \Rightarrow\left\{\begin{array}{l}I_{1}=\left(V_{2}+Z_{22} I_{2}\right) / Z_{21} \\ V_{1}=Z_{11}\left(V_{2}+Z_{22} I_{2}\right) / Z_{21}-Z_{12} I_{2}\end{array}\right.\right.$
$\left[\begin{array}{c}V_{1} \\ I_{1}\end{array}\right]=\left[\begin{array}{cc}\frac{Z_{11}}{Z_{21}} & \frac{Z_{11} Z_{22}}{Z_{21}}-Z_{12} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}}\end{array}\right]\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right]=\left[\begin{array}{cc}\frac{Z_{11}}{Z_{21}} & \frac{\Delta_{Z}}{Z_{21}} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}}\end{array}\right]\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right] \equiv\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right]$
$\Delta_{Z}=Z_{11} Z_{22}-Z_{12} Z_{21}$
If the network is reciprocal, $Z_{12}=Z_{21}, A D-B C=\frac{Z_{11} Z / 22}{Z_{21}{ }^{2}}-\frac{Z_{11} Z_{22}-Z_{12} Z_{21}}{Z_{21}{ }^{2}}=1$

$:\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}1+\frac{Y_{2}}{Y_{3}} & \frac{1}{Y_{3}} \\ Y_{1}+Y_{2}+\frac{Y_{1} Y_{2}}{Y_{3}} & 1+\frac{Y_{1}}{Y_{3}}\end{array}\right]$

- $\overbrace{}^{Z_{1}} \cdot \stackrel{Z_{2}}{\square} \cdot\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}1+\frac{Z_{1}}{Z_{3}} & Z_{1}+Z_{2}+\frac{Z_{1} Z_{2}}{Z_{3}} \\ \frac{1}{Z_{3}} & 1+\frac{Y_{2}}{Y_{3}}\end{array}\right]$

Try to derive them by yourself.

Some Properties of Symmetric Networks

$$
\begin{aligned}
& {[Z]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{12} & Z_{11}
\end{array}\right]} \\
& {[Y]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{12} & Y_{11}
\end{array}\right]} \\
& {[S]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{12} & S_{11}
\end{array}\right]}
\end{aligned}
$$

Some Properties of Symmetric Networks

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{1}^{+} \\
V_{1}^{-}
\end{array}\right]=\left[\begin{array}{c}
V_{\text {eve }}^{+} \\
V_{\text {eve }}^{-}
\end{array}\right]+\left[\begin{array}{c}
V_{\text {odd }}^{+} \\
V_{\text {odd }}^{-}
\end{array}\right],\left[\begin{array}{c}
V_{2}^{+} \\
V_{2}^{-}
\end{array}\right]=\left[\begin{array}{c}
V_{\text {eve }}^{+} \\
V_{\text {eve }}^{-}
\end{array}\right]-\left[\begin{array}{c}
V_{\text {odd }}^{+} \\
V_{\text {odd }}^{-}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1}^{+} \\
V_{2}^{+}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{v_{0}^{+}}^{+} \\
V_{\text {out }}^{+}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
V_{\text {out }}^{+} \\
V_{\text {oud }}^{+}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{1}^{+} \\
V_{2}^{+}
\end{array}\right]} \\
& {\left[\begin{array}{l}
V_{1}^{-} \\
V_{2}^{-}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }}^{-} \\
V_{\text {odd }}^{-}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
V_{\text {eve }}^{-} \\
V_{\text {odd }}^{-}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
V_{1}^{-} \\
V_{2}^{-}
\end{array}\right]}
\end{aligned}
$$

Some Properties of Symmetric Networks

S-Parameter of Symmetric Networks

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1}^{-} \\
V_{2}^{-}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{12} & S_{11}
\end{array}\right]\left[\begin{array}{l}
V_{1}^{+} \\
V_{2}^{+}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }}^{-} \\
V_{\text {odd }}^{-}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{12} & S_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }}^{+} \\
V_{\text {odd }}^{+}
\end{array}\right]} \\
& {\left[\begin{array}{l}
V_{\text {eve }}^{-} \\
V_{\text {odd }}^{-}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
S_{11} & S_{12} \\
S_{12} & S_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
V_{\text {eve }}^{+} \\
V_{\text {odd }}^{+}
\end{array}\right] \quad \begin{array}{l}
\Gamma_{\text {eve }}=S_{11}+S_{12} \\
\Gamma_{\text {odd }}=S_{11}-S_{12}
\end{array}} \\
& =\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
S_{11}+S_{12} & S_{11}-S_{12} \\
S_{12}+S_{11} & S_{12}-S_{11}
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }}^{+} \\
V_{\text {odd }}^{+}
\end{array}\right] \quad \Rightarrow \begin{array}{l}
S_{11}=\left(\Gamma_{\text {eve }}+\Gamma_{\text {odd }}\right) / 2 \\
S_{12}=\left(\Gamma_{\text {eve }}-\Gamma_{\text {odd }}\right) / 2
\end{array} \\
& =\left[\begin{array}{ll}
S_{12}+S_{11} & 0 \\
0 & S_{11}-S_{12}
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }}^{+} \\
V_{\text {odd }}^{+}
\end{array}\right] \equiv\left[\begin{array}{ll}
\Gamma_{\text {eve }} & 0 \\
0 & \Gamma_{\text {odd }}
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }}^{+} \\
V_{\text {odd }}^{+}
\end{array}\right]
\end{aligned}
$$

Z-Matrix of Symmetric Networks

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{12} & Z_{11}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }} \\
V_{\text {odd }}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{12} & Z_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
V_{\text {eve }} \\
V_{\text {odd }}
\end{array}\right]} & =\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{12} & Z_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right] \quad \begin{array}{l}
Z_{\text {eve }}=Z_{11}+Z_{12} \\
Z_{\text {odd }}=Z_{11}-Z_{12}
\end{array} \\
\quad=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
Z_{11}+Z_{12} & Z_{11}-Z_{12} \\
Z_{12}+Z_{11} & Z_{12}-Z_{11}
\end{array}\right]\left[\begin{array}{l}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right] \quad\left(Z_{\text {eve }}+Z_{\text {odd }}\right) / 2 \\
Z_{12}=\left(Z_{\text {eve }}-Z_{\text {odd }}\right) / 2
\end{array}\right]\left[\begin{array}{l}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right] \equiv\left[\begin{array}{ll}
Z_{\text {eve }} & 0 \\
0 & Z_{\text {odd }}
\end{array}\right]\left[\begin{array}{l}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right] \quad\left[\begin{array}{ll}
Z_{12}+Z_{11} & 0 \\
0 & Z_{11}-Z_{12}
\end{array}\right.
$$

Y-Matrix of Symmetric Networks

$\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{12} & Y_{11}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right] \Rightarrow\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}I_{\text {eve }} \\ I_{\text {odd }}\end{array}\right]=\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{12} & Y_{11}\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}V_{\text {eve }} \\ V_{\text {odd }}\end{array}\right]$

$$
\begin{aligned}
{\left[\begin{array}{c}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right] } & =\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{12} & Y_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }} \\
V_{\text {odd }}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
Y_{11}+Y_{12} \\
Y_{11}-Y_{12} \\
Y_{12}+Y_{11} \\
Y_{12}-Y_{11}
\end{array}\right]\left[\begin{array}{l}
V_{\text {eve }} \\
Y_{\text {odd }}=Y_{11}-Y_{12} \\
V_{\text {odd }}
\end{array}\right] \Rightarrow \begin{array}{l}
Y_{11}=\left(Y_{\text {eve }}+Y_{\text {odd }}\right) / 2 \\
Y_{12}=\left(Y_{\text {eve }}-Y_{\text {odd }}\right) / 2
\end{array}
\end{aligned}
$$

Try to derive them
by yourself.

Example

The characteristic admittance of the two $\lambda / 4$-section is $2 Y_{0}$. Find the S-parameters of the two-port with reference impedance $Z_{0}=Y_{0}^{-1}$. Based on the S-matrix, show that the circuit is lossless.

$$
\stackrel{\bullet}{0.25 \lambda}-\stackrel{j Y_{o}}{\text { Port } 1} \stackrel{0.25 \lambda}{2 Y_{o}} \xrightarrow{2 Y_{o}} \text { Port 2 }
$$

Find the input reflection coefficients $\Gamma_{i n e}$ and $\Gamma_{i n o}$ when the symmetric plane is placed with open and short circuits, respectively. Using the impedance transformation property, we have $Z_{\text {ine }}=0$ and $Z_{\text {ino }}=j Z_{0} / 2$, and $\Gamma_{\text {ine }}=-1$ and $\Gamma_{\text {ino }}=(j-2) /(j+2)$.

$$
\begin{aligned}
& S_{11}=\frac{1}{2}\left(\Gamma_{\text {ine }}+\Gamma_{\text {ino }}\right)=\frac{1}{2}\left(-1+\frac{j-2}{j+2}\right)=-\frac{2}{j+2}=S_{22} \\
& S_{21}=\frac{1}{2}\left(\Gamma_{\text {ine }}-\Gamma_{\text {ino }}\right)=\frac{1}{2}\left(-1-\frac{j-2}{j+2}\right)=-\frac{j}{j+2}=S_{12}
\end{aligned}
$$

One can validate that the circuit is lossless since $[S][S]^{T^{*}}=$ identity matrix.

Example

Let $Z_{A}=2 Z_{0}$. Find its Z matrix and Γ at port1 (reference impedance $=Z_{0}$) if port2 is short-
 circuited.
The Z-martix can be obtained via the ABCD matrices in p. 24:

$$
\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]=\frac{Z_{0}}{1+j 4}\left[\begin{array}{ll}
j & 4 \\
4 & j
\end{array}\right]
$$

Applying the even-odd analysis,

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{l}
V_{\text {eve }}+V_{\text {odd }} \\
V_{\text {eve }}-V_{\text {odd }}
\end{array}\right]=\left[\begin{array}{ll}
Z_{\text {in }}^{\text {eve }} & Z_{\text {in }}^{\text {odd }} \\
Z_{\text {in }}^{\text {eve }} & -Z_{\text {in }}^{\text {odd }}
\end{array}\right]\left[\begin{array}{l}
I_{\text {eve }} \\
I_{\text {odd }}
\end{array}\right] Z_{\text {in }}^{\text {eve }}=Z_{0} \frac{2 Z_{A}+j Z_{o} \tan 45^{\circ}}{Z_{0}+j 2 Z_{A} \tan 45^{\circ}}=Z_{0} \frac{4+j}{1+j 4}} \\
& =\left[\begin{array}{ll}
Z_{i n}{ }^{\text {eve }} & Z_{i n}{ }^{\text {odd }} \\
Z_{\text {in }}{ }^{\text {eve }} & -Z_{\text {in }}^{\text {odd }}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
Z_{i n}{ }^{\text {eve }}+Z_{i n}{ }^{\text {odd }} & Z_{i n}{ }^{\text {eve }}-Z_{i n}{ }^{\text {odd }} \\
Z_{i n}{ }^{\text {eve }}-Z_{i n}{ }^{\text {odd }} & Z_{i n}{ }^{\text {eve }}+Z_{i n}{ }^{\text {odd }}
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right] \\
& Z_{i n}^{\text {odd }}=j Z_{o} \tan 45^{\circ}=j Z_{o} \\
& Z_{11}=Z_{22}=\frac{Z_{\text {in }}^{\text {eve }}+Z_{\text {in }}^{\text {odd }}}{2}=Z_{0} \frac{j}{1+j 4} \\
& Z_{12}=Z_{21}=\frac{Z_{i n}^{\text {eve }}-Z_{\text {ind }}^{\text {odd }}}{2}=Z_{0} \frac{4}{1+j 4}
\end{aligned}
$$

Equivalent Circuit for Two-Port Networks

Theory of TRL Network Analyzer Calibration

A coaxial-to-microstrip transition

Transition represented
by a black box.

(1) If the network is reciprocal, there are six degrees of freedom, so the equivalent circuit has six
$\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right] \Leftrightarrow$
 independent parameters.
(2) A nonreciprocal network cannot be represented by a passive equivalent circuit using reciprocal elements.

Why calibration is necessary in a microwave measurement?

(a) The S-parameters include magnitude and phase measurement.
(b) Different circuits may have different reference planes, transitions, connectors, housing structures, and/or frequency bands.

The TRL Calibration

Δ Error Box : Losses and phase delays caused by the effects of connectors, cables, and/or transitions.
Δ A calibration procedure is used to characterize the S-parameters of the error box before measurement of DUT.

Thru---Remove the DUT and Let the S-parameters be [T]

$S_{21}=S_{12}$ (Reciprocal). The error box are symmetric and identical.
$u=S_{21} a_{1}+S_{22} v=S_{21} a_{1}+S_{22}\left(S_{22} v+S_{21} a_{2}\right)=S_{21} \frac{a_{1}+S_{22} a_{2}}{1-S_{22}{ }^{2}}$
$v=S_{22} u+S_{21} a_{2}=S_{21} S_{22} \frac{a_{1}+S_{22} a_{2}}{1-S_{22}{ }^{2}}+S_{21} a_{2}=S_{21} \frac{S_{21} a_{1}+a_{2}}{1-S_{22}{ }^{2}}$
$b_{1}=S_{11} a_{1}+S_{12} v=S_{11} a_{1}+S_{12}\left(S_{21} \frac{S_{21} a_{1}+a_{2}}{1-S_{22}{ }^{2}}\right) \equiv T_{11} a_{1}+T_{12} a_{2}$
$T_{11}=S_{11}+\frac{S_{12} S_{21} S_{22}}{1-S_{22}{ }^{2}}=S_{11}+\frac{S_{21}{ }^{2} S_{22}}{1-S_{22}{ }^{2}}=T_{22}, T_{12}=\frac{S_{12} S_{21}}{1-S_{22}{ }^{2}}=\frac{S_{21}{ }^{2}}{1-S_{22}{ }^{2}}=T_{21}$

Reflect---Terminate the Error Box to a Known Load

The two measurement ports are decoupled, $R_{12}=R_{21}=0$
$\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{ll}S_{11} & S_{12} \\ S_{21} & S_{22}\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]_{\text {(Error box })}, \Gamma_{L}=\frac{a_{2}}{b_{2}}$
$b_{2}=S_{21} a_{1}+S_{22} a_{2}=S_{21} a_{1}+S_{22} \Gamma_{L} b_{2}=\frac{S_{21}}{1-S_{22} \Gamma_{L}} a_{1}$
$b_{1}=S_{11} a_{1}+S_{12} a_{2}=S_{11} a_{1}+S_{12} \Gamma_{L} b_{2}=\left(S_{11}+\frac{S_{12} S_{21} \Gamma_{L}}{1-S_{22} \Gamma_{L}}\right) a_{1} \equiv R_{11} a_{1}$
$R_{11}=S_{11}+\frac{S_{12} S_{21} \Gamma_{L}}{1-S_{22} \Gamma_{L}}=R_{22}$

Line---Remove the DUT and Insert a Section Z_{0} Line

$v e^{\gamma \ell}=S_{22} u e^{-\gamma \ell}+S_{21} a_{2}=S_{22}\left(S_{21} a_{1}+S_{22} v\right) e^{-\gamma \ell}+S_{21} a_{2}$
$v=S_{22}\left(S_{21} a_{1}+S_{22} v\right) e^{-2 \gamma \ell}+S_{21} a_{2} e^{-\gamma \ell}=e^{-\gamma \ell} \frac{S_{22} S_{21} a_{1} e^{-\gamma \ell}+S_{21} a_{2}}{1-S_{22}{ }^{2} e^{-2 \gamma \ell}}$
$b_{1}=S_{11} a_{1}+S_{12} v=S_{11} a_{1}+S_{12}\left(e^{-\gamma \ell} \frac{S_{22} S_{21} a_{1} e^{-\gamma \ell}+S_{21} a_{2}}{1-S_{22}{ }^{2} e^{-2 \gamma \ell}}\right) \equiv L_{11} a_{1}+L_{12} a_{2}$
$L_{11}=S_{11}+\frac{S_{12}{ }^{2} S_{22} e^{-2 \gamma \ell}}{1-S_{22}{ }^{2} e^{-2 \gamma \ell}}=L_{22}, L_{12}=\frac{S_{12}{ }^{2} e^{-\gamma \ell}}{1-S_{22}{ }^{2} e^{-2 \gamma \ell}}=L_{21}$

TRL Calibration (cont'd)

(1) The S-parameters for the error boxes are known.
(2) The S-parameters for DUT can then be obtained as

$$
\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]_{\text {DUT }}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{\text {Error Box }}^{-1}\left[\begin{array}{ll}
A_{m} & B_{m} \\
C_{m} & D_{m}
\end{array}\right]_{\text {Measured }}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{\text {Error box }}
$$

TRL Calibration (cont'd)

$$
\left.\begin{array}{cc}
T_{11}=S_{11}+\frac{S_{22} S_{12}{ }^{2}}{1-S_{22}{ }^{2}} & L_{11}=S_{11}+\frac{S_{12}{ }^{2} S_{22}{ }^{-2 \gamma \ell}}{1-S_{22}{ }^{2} e^{-2 \gamma \ell}} \\
T_{12}=\frac{S_{12}{ }^{2}}{1-S_{22}{ }^{2}} & \\
R_{11}=S_{11}+\frac{S_{12}{ }^{2} \Gamma_{L}}{1-S_{22}{ }^{2} \Gamma_{L}} & L_{12}=\frac{S_{12}{ }^{2} e^{-\gamma \ell}}{1-S_{22}{ }^{2} e^{-2 \gamma \ell}}
\end{array}\right\} \text { Solve } \underbrace{S_{11}, S_{12}, S_{22}, \Gamma_{L} \text {, and } e^{-\gamma \ell}}_{5 \text { unknowns }}
$$

After some simple algebraic manipulations, one can obtain
$e^{-\gamma \ell}=\frac{L_{12}{ }^{2}+T_{12}{ }^{2}-\left(T_{11}-L_{11}\right)^{2} \pm \sqrt{\left[L_{12}{ }^{2}+T_{12}{ }^{2}-\left(T_{11}-L_{11}\right)^{2}\right]^{2}-4 L_{12}{ }^{2} T_{12}{ }^{2}}}{2 L_{12}{ }^{2} T_{12}{ }^{2}}$
$S_{22}=\frac{T_{11}-L_{11}}{T_{12}-L_{12} e^{-\gamma \ell}}, S_{11}=T_{11}-S_{22} T_{12}, S_{12}{ }^{2}=T_{12}\left(1-S_{22}{ }^{2}\right)$
$\Gamma_{L}=\frac{R_{11}-S_{11}}{S_{12}{ }^{2}+S_{22}\left(R_{11}-S_{11}\right)}$

Find the Y-parameters of the network and the input admittances seen at port 1 when port 2 is terminated in $Z_{2}=0.5 Z_{0}, Z_{2}=\infty$. The reference impedance is Z_{0}.

If can be known that $Y_{11}=Y_{22}, Y_{12}=Y_{21}$. When $\mathrm{V}_{2}=0, V^{-}=-V^{+}$

$$
\begin{aligned}
& \text { (1) } Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=j Y_{0} \tan \theta-j \frac{Y_{0}}{2} \cot 2 \theta=Y_{22} \\
& \text { (2) } V_{11}=V^{+} e^{j 2 \theta}+V^{-} e^{-j 2 \theta}=2 j V^{+} \sin 2 \theta \\
& I_{2}=-\left(\frac{V^{+}}{2 Z_{0}}-\frac{V^{-}}{2 Z_{0}}\right)=-\frac{V^{+}}{Z_{0}} \\
& Y_{12}=Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0}=j \frac{Y_{0}}{2} \csc 2 \theta
\end{aligned}
$$

Y_{12} cannot see the open stub?

Optional Example (Midterm 2004 part 2)

Find the Y-parameters of the network and the input admittances seen at port 1 when port 2 is terminated in $Z_{2}=0.5 Z_{0}, Z_{2}=\infty$. The reference impedance is Z_{0}.

$Y_{\text {eve }}=j Y_{0} \tan \theta+j \frac{Y_{0}}{2} \tan \theta$
$Y_{\text {odd }}=j Y_{0} \tan \theta-j \frac{Y_{0}}{2} \cot 2 \theta$
$\left[\begin{array}{l}V_{1} \\ I_{1}\end{array}\right]=\left[\begin{array}{l}V_{\text {eve }} \\ I_{\text {eve }}\end{array}\right]+\left[\begin{array}{l}V_{\text {odd }} \\ I_{\text {odd }}\end{array}\right]=\left[\begin{array}{l}1 \\ Y_{\text {eve }}\end{array}\right] V_{\text {eve }}+\left[\begin{array}{l}1 \\ Y_{\text {odd }}\end{array}\right] V_{\text {odd }}$

$$
Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=\frac{Y_{\text {eve }}+Y_{\text {odd }}}{2}
$$

$=j Y_{0} \tan \theta+j \frac{Y_{0}}{4}(\tan \theta-\cot \theta)$
$\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right]=\left[\begin{array}{l}V_{\text {eve }} \\ I_{\text {eve }}\end{array}\right]-\left[\begin{array}{l}V_{\text {odd }} \\ I_{\text {odd }}\end{array}\right]=\left[\begin{array}{l}1 \\ Y_{\text {eve }}\end{array}\right] V_{\text {eve }}-\left[\begin{array}{l}1 \\ Y_{\text {odd }}\end{array}\right] V_{\text {odd }}$
$=j Y_{0} \tan \theta-j \frac{Y_{0}}{2} \cot 2 \theta=Y_{22}$
$V_{2}=0 \Rightarrow V_{1}=2 V_{\text {eve }}=2 V_{\text {odd }}$
$I_{1}=Y_{\text {evv }} V_{\text {eve }}+Y_{\text {odd }} V_{\text {odd }}=\left(Y_{\text {eve }}+Y_{\text {odd }}\right) V_{\text {eve }}$

$$
Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0}=\frac{Y_{\text {eve }}-Y_{\text {odd }}}{2}=j \frac{Y_{0}}{4}(\tan \theta+\cot \theta)
$$

$I_{2}=Y_{\text {eve }} V_{\text {eve }}-Y_{\text {odd }} V_{\text {odd }}=\left(Y_{\text {eve }}-Y_{\text {odd }}\right) V_{\text {eve }}$

- This study presents a methodology of exciting a pure circular $\mathrm{TE}_{\mathrm{mn}}$ mode using cascaded Y -type power dividers.
- The dividers partition the input signal into several parts which are then coupled to a circular waveguide through apertures. The coupling apertures induce magnetic dipoles. With proper arrangement of the magnetic dipoles on the circumference of the circular waveguide, they then jointly excite the desired mode.
- The coupling strength and the mode purity are calculated using the reciprocity theorem and the magnetic current sources.
- Three mode converters, $\mathrm{TE}_{21}, \mathrm{TE}_{01}$, and TE_{41}, were designed, built, and tested at W-band. Back-to-back transmission measurements exhibit excellent agreement to the results of computer simulations when the conductor loss is taken into consideration. The measured transmissions are high and the bandwidths are broad.
-These Y-type converters are structurally simple but the machining errors are critical. The factors affecting the performance will be discussed in detail.
T. H. Chang*, C. S. Li, C. N. Wu, and C. F. Yu, "Exciting circular TEmn modes at low terahertz region", Appl. Phys. Lett. 93, 111503 (2008).

Part II

Applications

- Exciting a specific waveguide mode plays a key role in many applications, such as the gyrotron traveling-wave tube (gyroTWT) and the gyrotron backward-wave oscillator (gyro-BWO).
- In the gyro-TWT, the mode converter launches a wave of a specific mode into the interaction structure to interact with the electron beam; while, in the gyro-BWO, the mode converter extracts the wave power at the upstream end.
- In addition to the gyrotron applications, the mode converters can be used in microwave/plasma systems, radar/antennas systems, and rotary joints.

Techniques to Excite a Specific Waveguide Mode

- By coupling method, they can be classified into two types: serpentine/corrugated structure and sidewall coupling structure.
- Taking gyrotron as an example, the general requirements for the mode converter/launcher include high converting efficiency, high mode purity, broad bandwidth, high-power capability, and short converting length.
- Y-type converters are superior over other converters in the gyrotron applications.

Current Sheets and Arbitrary Current Source

Properties and Characteristics of the Waveguide Modes

Table 1 summarizes the desired modes and their corresponding coupling structures, radii, and parasitic modes.

Desired mode	TE 21	TE_{01}	TE_{41}
Coupling structure	Dual-feed	Quad-feed	Quad-feed
Waveguide radius	1.74 mm	2.15 mm	3.00 mm
Parasitic modes	$\mathrm{TE}_{11, \mathrm{~A},} \mathrm{TE}_{11, \mathrm{~B}}$	$\mathrm{TE}_{11, \mathrm{~A},} \mathrm{TE}_{11, \mathrm{~B}}$	$\mathrm{TE}_{11, \mathrm{~A}}, \mathrm{TE}_{11, \mathrm{~B}}$
	$\underline{\mathrm{TM}_{01}}$	$\mathrm{TE}_{21, \mathrm{~A},} \mathrm{TE}_{21, \mathrm{~B}}$	$\mathrm{TE}_{21, \mathrm{~A},} \mathrm{TE}_{21, \mathrm{~B}}$
		TM_{01},	TE_{01}
		$\mathrm{TM}_{11, \mathrm{~A},}, \mathrm{TM}_{11, \mathrm{~B}}$	$\mathrm{TE}_{31, \mathrm{~A}}, \mathrm{TE}_{31, \mathrm{~B}}$
			$\mathrm{TE}_{12, \mathrm{~A}}, \mathrm{TE}_{12, \mathrm{~B}}$
			TM_{01},
			$\mathrm{TM}_{11, \mathrm{~A},}, \mathrm{TM}_{11, \mathrm{~B}}$
			$\mathrm{TM}_{21, \mathrm{~A}}, \mathrm{TM}_{21, \mathrm{~B}}$

Difficulties to Excite a Higher-Order Mode

Cutoff frequency vs waveguide radius. For the W-band operation, the desired waveguide radii are $1.74,2.15$, and 3.00 mm , for TE_{21}, TE_{01}, and TE_{41}, respectively.

Mode Synthesizing

Excitation of a given mode can be achieved using properly arranged electric or magnetic current sources. These current sources come from the probe feeds, the loop feeds, or the coupling apertures. The sidewall coupling apertures, capable of high power operation, thus are the best choice for present study. Mode excitation from an arbitrary electric and magnetic current source can be found in Pozar's Chap.4. Here we present a complete approach to exciting a cylindrical $\mathrm{TE}_{\mathrm{mn}}$ mode using multiple magnetic current sources.

- Induce current sources
- Synthesize the desired mode
- Analyze mode purity

Electric/Magnetic Dipoles and Currents

(a)
(d)

$$
\begin{aligned}
& \bar{P}_{e}=\alpha_{e} \varepsilon_{0} E_{n} \hat{n} \delta\left(\bar{x}-\bar{x}_{0}\right) \\
& \bar{P}_{m}=-\alpha_{m} \bar{H}_{t} \delta\left(\bar{x}-\bar{x}_{0}\right)
\end{aligned}
$$

Aperture Shape	α_{e}	α_{m}
Round hole	$\frac{2 r_{0}^{3}}{3}$	$\frac{4 r_{0}^{3}}{3}$
Rectangular slot	$\frac{\pi \ell d^{2}}{16}$	$\frac{\pi \ell d^{2}}{16}$
$(\bar{H}$ across slot $)$		

\square

Equivalent Polarization Currents

The electric and magnetic dipole moments are

$$
\begin{aligned}
& \bar{P}_{e}=\alpha_{e} \varepsilon_{0} E_{n} \hat{n} \delta\left(\bar{x}-\bar{x}_{0}\right) \\
& \bar{P}_{m}=-\alpha_{m} \bar{H}_{t} \delta\left(\bar{x}-\bar{x}_{0}\right)
\end{aligned}
$$

The equivalent electric and magnetic polarization currents are

$$
\begin{aligned}
& \bar{J}=\sum j \omega \bar{P}_{e}=0 \\
& \bar{M}=\sum j \omega \mu_{0} \bar{P}_{m}=-j \omega \mu_{0} \alpha_{m} H_{z} \hat{\mathbf{z}} \sum_{i} \delta\left(\bar{x}-\bar{x}_{i}\right)
\end{aligned}
$$

where the wave is assumed to be sinusoidal time-dependent ($e^{j o t}$) \bar{x}_{i} indicates the position of the i th coupling hole and H_{z} is the amplitude of the tangential magnetic field.

The current sources just induced might excite desired mode as well as parasitic modes. In this section we provide a method to show how the desired mode is synthesized and how the parasitic modes are suppressed.
A useful theorem in electromagnetism is to be mentioned---the reciprocity theorem.
Two sets of current sources: $\left(\bar{J}_{1}, \bar{M}_{1}\right)$ and $\left(\bar{J}_{2}, \bar{M}_{2}\right)$
Their corresponding fields: $\quad\left(\bar{E}_{1}, \bar{H}_{1}\right)$ and $\left(\bar{E}_{2}, \bar{H}_{2}\right)$
Assume \bar{M}_{2} to be the only nonzero current source. Then, the reciprocity theorem reads:

$$
\oint_{S}\left(\bar{E}_{1} \times \bar{H}_{1}-\bar{E}_{2} \times \bar{H}_{2}\right) \cdot d s=\int_{V}\left(\bar{M}_{2} \cdot \bar{H}_{1}\right) d v
$$

Synthesize the desired mode:
 the reciprocity theorem (II)

Since $\bar{J}_{1}=\bar{M}_{1}=0$, the corresponding \bar{E}_{1} and \bar{H}_{1} are assumed to be certain circular $\mathrm{TE}_{\mathrm{mn}}$ waveguide mode.
\bar{E}_{2} and \bar{H}_{2} are the electric and magnetic fields due to \bar{M}_{2}.
The resulting electric and magnetic fields in the cylindrical waveguide can be expressed as:
$\bar{E}_{2}^{+}=\sum_{n} A_{n}^{+}\left(\bar{e}_{n}+\hat{\mathbf{z}} e_{z n}\right) \cdot e^{-j \beta_{n} z}$
$\bar{H}_{2}^{+}=\sum_{n} A_{n}^{+}\left(\bar{h}_{n}+\hat{\mathbf{z}} h_{z n}\right) \cdot e^{-j \beta_{n} z}$
where $\left(\bar{e}_{n}+\hat{\mathbf{z}} e_{z n}\right)$ and $\left(\bar{h}_{n}+\hat{\mathbf{z}} h_{z n}\right)$ are the normalized fields of the nth mode and A_{n}^{+}represents the amplitude of the nth mode.

Synthesize the desired mode:

How many dipoles are needed?
Side view Top view
(a) T

(b)

(c)

Side view of the magnetic field and top view of the electric field for (a) TE_{21} mode, (b) TE_{01} mode, and (c) TE_{41} mode. The field profiles are calculated using HFSS. Two couplings can excite TE_{21} modes, while four couplings with proper phase control can excite either TE_{01} or TE_{41} mode.

Synthesize the desired mode:

Demonstration

How the magnetic dipoles are formulated? The case for the TE_{01} mode is demonstrated.

$$
\bar{P}_{m}=-\alpha_{m} H_{z} \hat{\mathbf{z}} \delta\left(\rho-\rho_{0}\right) \delta\left(z-z_{0}\right) \cdot\left[\delta(\phi-0)+\delta\left(\phi-\frac{\pi}{2}\right)+\delta(\phi-\pi)+\delta\left(\phi-\frac{3 \pi}{2}\right)\right]
$$

where H_{z} is the tangential H field (along z direction) and α_{m} is a constant depending on the geometry of the hole. Four magnetic dipoles evenly distributed in the circumference are assumed.

With the lengthy calculation, we would find the solution for the amplitude of the nth mode:
$A_{n}^{+}=\frac{1}{P_{n}} \int_{V}\left(\hat{z} h_{z n}\right) \cdot j \omega \mu_{0} \bar{P}_{m} e^{i \beta_{n} z} d V=-\frac{1}{P_{n}} \alpha_{m} H_{z 0} j \omega \mu_{0} \cdot\left[h_{z n}(0)+h_{z n}\left(\frac{\pi}{2}\right)+h_{z n}(\pi)+h_{z n}\left(\frac{3 \pi}{2}\right)\right]$ where $P_{n}=2 \oint_{S_{0}}\left(\left(\bar{e}_{n} \times \bar{h}_{n}\right) \cdot \hat{\mathbf{z}}\right) d s$ is a normalization constant proportional to the power flow of the nth mode and $h_{z n}(\phi)=(A \sin m \phi+B \cos m \phi) J_{m}\left(p_{m n}^{\prime}\right)$.

Analyze mode purity

Using the above mentioned approaches, we could synthesize the desired mode. However, some unwanted modes may inevitably be generated and result in a serious mode-competition problem in a gyrotron experiment. Therefore, mode purity is an important issue in the design of a mode converter.

- TE_{21} mode

$$
\begin{aligned}
& \bar{P}_{m}=-\alpha_{m} H_{z} \delta\left(\rho-\rho_{0}\right) \delta\left(z-z_{0}\right) \hat{\mathbf{z}} \cdot[\delta(\phi-0)+\delta(\phi-\pi)] \\
& A_{\mathrm{TE} 21, \mathrm{~B}}^{+}=-\frac{1}{P_{21}} \alpha_{m} H_{z 0} j \omega \mu_{0} \cdot 2 B J_{m}\left(p_{m n}^{\prime}\right) \\
& A_{\mathrm{TE} 21, \mathrm{~A}}^{+}=0, A_{\mathrm{TE} 11, \mathrm{~A}}^{+}=A_{\mathrm{TE} 11, \mathrm{~B}}^{+}=0, A_{\mathrm{TM} 01}^{+}=0
\end{aligned}
$$

The arrangement of dual inputs only excites the linear polarization of the TE_{21} mode, e.g., and luckily, it eliminates non two-fold symmetric modes. So the major parasitic mode TE_{11} mode cannot be excited.

Analyze mode purity

The field pattern of TE_{01} mode is azimuthally symmetric. We can choose dual feeds or quad feeds. Quad-feed structure is sufficient to eliminate these two unwanted modes. The magnetic dipoles can be expressed as:

- TE_{01} mode
$\bar{P}_{m}=-\alpha_{m} H_{z} \delta\left(\rho-\rho_{0}\right) \delta\left(z-z_{0}\right) \hat{\mathbf{z}} \cdot\left[\delta(\phi-0)+\delta\left(\phi-\frac{\pi}{2}\right)+\delta(\phi-\pi)+\delta\left(\phi-\frac{3 \pi}{2}\right)\right]$
$A_{\mathrm{TE} 01}^{+}=\frac{1}{P_{n}} \int_{V}\left(\hat{z} h_{z n}\right) \cdot j \omega \mu_{0} \bar{P}_{m} e^{j \beta_{n} z} d v=-\frac{4 B}{P_{n}} \alpha_{m} H_{z 0} j \omega \mu_{0} J_{0}\left(p_{01}^{\prime}\right)$
$A_{\mathrm{TE} 11, \mathrm{~A}}^{+}=A_{\mathrm{TE} 11, \mathrm{~B}}^{+}=0, \quad A_{\mathrm{TE} 21, \mathrm{~A}}^{+}=A_{\mathrm{TE} 21, \mathrm{~B}}^{+}=0$
$A_{\mathrm{TM} 01}^{+}=0, \quad A_{\mathrm{TM} 11, \mathrm{~A}}^{+}=A_{\mathrm{TM} 11, \mathrm{~B}}^{+}=0$

The quad-feed arrangement avoids exciting the parasitic modes. So the mode purity would be very

Simulation Results Using HFSS

The field pattern of TE_{41} mode suggests a quad-feed structure.
The magnetic dipoles can be expressed as:

- TE_{41} mode
$\bar{P}_{m}=-\alpha_{m} H_{z} \delta\left(\rho-\rho_{0}\right) \delta\left(z-z_{0}\right) \hat{\mathbf{z}} \cdot\left[\delta(\phi-0)+\delta\left(\phi-\frac{\pi}{2}\right)+\delta(\phi-\pi)+\delta\left(\phi-\frac{3 \pi}{2}\right)\right]$
$A_{\mathrm{TE} 41, \mathrm{~B}}^{+}=-\frac{4 B}{P_{41}} \alpha_{m} H_{z 0} j \omega \mu_{0} J_{4}\left(p_{41}^{\prime}\right)$
$A_{\text {TE01 }}^{+}=-\frac{4 B}{P_{01}} \alpha_{m} H_{z 0} j \omega \mu_{0} J_{0}\left(p_{01}^{\prime}\right) \neq 0$
$P_{41}^{\text {total }}=\frac{Z_{0} k_{0} \beta_{41} \pi}{2 k_{c, 41}^{4} \varepsilon_{04}}\left(p_{41}^{\prime}{ }^{2}-4^{2}\right) J_{4}^{2}\left(p_{41}^{\prime}\right) 16 \cdot\left(\alpha_{m} H_{z 0} j \omega \mu_{0}\right)^{2} J_{4}^{2}\left(p_{41}^{\prime}\right)$
$P_{01}^{\text {total }}=\frac{Z_{0} k_{0} \beta_{01} \pi}{2 k_{c, 01}^{4} \varepsilon_{00}}\left(p_{01}^{\prime}{ }^{2}-0^{2}\right) J_{0}^{2}\left(p_{01}^{\prime}\right) 16 \cdot\left(\alpha_{m} H_{z 0} j \omega \mu_{0}\right)^{2} J_{0}^{2}\left(p_{01}^{\prime}\right)$
The power ratio is: $\frac{P_{01}^{\text {total }}}{P_{41}^{\text {total }}}=\frac{\beta_{41} p_{01}^{\prime}{ }^{4} \varepsilon_{04}}{\beta_{01} p_{41}^{\prime}{ }^{4} \varepsilon_{00}} \frac{\left(p_{01}^{\prime}{ }^{2}-0^{2}\right)}{\left(p_{41}^{\prime}{ }^{2}-4^{2}\right)} \frac{J_{0}^{4}\left(p_{01}^{\prime}\right)}{J_{4}^{4}\left(p_{41}^{\prime}\right)}$

(b) TE_{01}

Calculated field pattern and the mode purity for (a) TE_{21} mode, (b) TE_{01} mode, and (c) TE_{41} mode. The transmissions of the desired modes are shown in blue lines and the reflections are shown in dashed lines. The minor and major parasitic modes are shown in gray and red, respectively.
(a) TE_{21}

(b) TE01

Two identical converters joined back-to-back for the three modes of interest. Each set consists of three pieces made of oxygenfree high-conductivity copper.
(c) TE41

Experimental Setup

(b)

(a) Photo of the experimental setup for directly measuring the back-to-back transmission. The test set is connected to the head modules which are calibrated. The test set is enlarged.
(b) Slotted plate of TE_{01} converter as an example.

Simulated and Measured Results

Field pattern and transmission for (a) TE_{21}, (b) TE_{01}, and (c) TE_{41}, respectively. The field patterns are HFSS's simulation results. The solid dots represent the measured results and the lines are the simulations. Three different resistivity of the copper are displayed.

Part II

Conclusion

Using Y-type power divider to excite pure $\mathrm{TE}_{\mathrm{mn}}$ modes was reported. Three mode converters were designed, fabricated, and tested. These converters feature a high back-to-back converting efficiency, high mode purity, broad bandwidth, and compact converting section. Such a converter is suitable for a variety of applications, especially the gyrotrons to generate low-terahertz radiation [34]. At higher frequency, like terahertz region, the micro-fabrication technique is need, which is currently under investigation. The authors would like to thank the technical support of Mr. C. Lee of Ansoft, Taiwan Branch.

[^0]The End of Ohap. 4

[^0]: T. H. Chang, C. H. Li, C. N. Wu, and C. F. Yu, " Generating pure circular TE mm modes using Y-type power dividers", IEEE Trans. Microwave Theory Tech. 58, 1543 (2010).

