Chapter 6 Microwave Resonators

Part I
1. Series and Parallel Resonant Circuits

2. Loss and Q Factor of a Resonant Circuit
3. Various Waveguide Resonators

4. Coupling to a Lossy Resonator

Part 1T

® Time-Domain Analysis of Open Cavities

Part 111
® Spectral-Domain Analysis of Open Cavities

6.1 Series and Parallel Resonant Circuits
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Series Resonant Circuit

Near Resonance @ = @, + Aw, Aw is small.
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® A resonator with loss can be treated as a lossless resonator whose resonant
frequency w, is replaced by a complex frequency w,(1+j/20)
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Parallel Resonant Circuit
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Parallel Resonant Circuit

The loss factor can be accounted by
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Loaded and Unloaded Q

® Unloaded Q (Load resistance R, — o)

| Resonant

Series Resonance: Q=(a,RC)" =a,L/R cireuit

o
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Parallel Resonance: Q0 =w,RC =R/w,L
O~ for series resonant circuits;
® External O, O, = ‘
L for parallel resonant circuits.
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Summary

(1) Model for a Series Resonant Circuit
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(2) Model for a Parallel Resonant Circuit
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short-circuited at w, and has O — ©




6.2 Transmission Line Resonators

6.2 Transmission Line Resonators
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Example 6.2
A half-wave microstrip resonator

50-Q line, /2 resonator, d =1.59 mm, ¢, =2.2, tand = 107, £ =5 GHz.

Calculate its Q value.

Sol: ;=50 Q, d=1.59 mm, and ¢,=2.2 = W=4.9 mm, ¢, =

0=2/2=cf(2f f6.4y ) =21.9 mm
S =2r/A=143.2 rad/m

a, =R/Z,W =0.075 Np/m

a,; =..=0.0611 Np/m

0=p)2a=p/2(a, +a,)=526.

=1.87.

6.3 Rectangular Waveguide Cavity

TE,,, TM,,, modes :
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Example 6.3
Design of a Rectangular Waveguide Cavity

a=40 mm, b =20.0 mm, &, =2.25, tand = 4x107".If f =5 GHz,
find d and Q values for £ =1.

Sol:
L@ [ 20 s 5708 em”
3x10
Bd=tr=d=—t" 5305 mm,forl=1.

R =1.84x107 Q(copper@5GHz), 1 = 1\2/9’ =2513Q
£,

0, =(tan &) =2500, Q, =8370, £ =1.

-1 -1
o= Lyl =(1 L j =1925, £=1.
0. 0,) \8370 2500




6.6 Excitation of Resonators

Gap-Coupling to a
Micro resonator cavity

Probe-coupling to
A rectangular WG cavity

Cavity Resonator

(1) The penetration depth / is tunable
For impedance adjustment.
(2) The probe can be sliding along z.

Coupling to Microwave Resonators

(a) A microstrip transmission line resonator gap coupled to a microstrip feed line.
(b) A rectangular cavity resonator fed by a coaxial probe.

(c) A circular cavity resonator aperture coupled to a rectangular waveguide.

(d) A dielectric resonator coupled to a microstrip feed line.

(e) A Fabry-Perot resonator fed by a waveguide horn antenna.

A Gap-Coupled Microstrip Resonator

|[ - ! "3 wan B4
7 iy
) T . gl
Feed line Gap Open-circuil 1 W Bl = ally

capacitinee A/ resonator

b, =—wCZy

® Temporarily treat the lossy resonator as
losses and apply the concept of complex
frequency to evaluate its loss term R
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® Resonance occurs at 2, =0, b, +tan ¢ =0, tan ¢ =-b_,
® If) <1, w isclose to the first resonant frequency of the unloaded resonator.
® The coupling of the capacitor C will lower its resonant frequency.

The Coupling Coefficient g
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0b, Rz

b, <7/20, g <1, undercoupled
b, =7/20, g =1, critically coupled
b, >\7/20, g >1, overcoupled




Smith chart for the gap-coupled microstrip resonator

C=0,033 pF

5
2

Example 6.6
Design of Gap-Coupled Microstrip Resonator

50-Q microstrip feedline, 50-Q microstrip A/2 resonator with ¢ =21.75 mm,

&, =1.9, @ =0.001 dB/mm. Find the coupling capacitor and the resonant

frequency f,.

Sol: 11
B 3x10 5 GHz

25\/g,e,f 2x21.75x~/1.9

_p
A,
p T
=——=——=628(or 200 x
0= 2£a ( 7)

=0.05
2x2007 2007[

= bc = 0059 =0.032 pF
a)Z 271'><5x10 x50

f, =4.918 GHz(obtained by a root-searching process)

fo =

6.6 Excitation of Resonators

Critical coupling : A resonator is matched to a feedline to have max
power transfer at resonant frequency.

4 : Z,=R+2jLAw

O VVVv Max power transfer — Conjugate matching
) (.

Zy
T op|_oP =0, See Chapter 2.
I @ GR[ OX

=Z,=Z,,R, =R, , X, =-X

® Atresonance, w=aw,, or Aw=0, Z, =R=1Z7,
Unloaded Q=a,L/R
External Q =@,L/Z,

g

® Coupling coefficient g=0/0,=Z,/R
g <1, resonator is undercoupled to the feedline.
g =1, resonator is critically coupled to the feedline.
g > 1, resonator is overcoupled to the feedline.

Smith chart illustrating coupling to
series RLC circuit
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Time-Domain Analysis of Open Cavities

Introduction
Formulation
Numerical Algorithm
A Fortran Exercise
Discussion

Appendix

Dispersion relation for a lossy waveguide

Complex-root finding by Muller’s method (Fortran)

Integration of differential equation using Runge-Kutta (Fortran)
Spectral domain analysis of open cavity

Solution to exercise

I. Introduction

Caption: Illustrative model of an open
cavity. Section z < z, is a cutoff waveguide

[—zﬁ_ Ry (for electron beam entrance). The section
P ! .

- _g.:ﬁ-l e e B T W between z, and z; comprises the main body
“"1,__"‘_“‘”._\\ FoHgoIng  of the cavity. The section between z; and z,

is slightly tapered to provide partial
reflection back to the cavity and partial
transmission into the output waveguide (z >
z,).

bo—— b —— b

* Open cavities are employed in gyrotrons for generation and
extraction of high power millimeter/terahertz radiation.

» The resonant characteristics depends on the structure. This is a
low-Q resonant circuit due to the open-end structure.

* The materials are self-contained and self-explanatory.
» A complementary spectral-domain model can be found in
Appendix.




I1. Formulation

— ... Consider a typical open cavity
_TJ‘JT [ z,[R'_-ﬂz formed of multiple sections of
il TEpm mode 29 24 vufgoing

TE . wate uniform and linearly tapered
- structures. Find the field profile
and the Q-factor.

T

3 assumptions:

» The waveguide radius changes slowly and there is no mode
conversion.

* A resonant mode is initially present in the cavity. All fields vary
with time as exp(-iwf).

¢ The end sections are uniform to ensure the correctness of
calculation.

®=ao, +iw, (where @, <0.)

Time-Domain Analysis

The time dependence of a field component (say B, ) is

—iot wit —io,t
B,~e ™ =ee

Field energy ~‘BZ‘2 ~e*®! | (9,<0)

Power loss ~ = 2|w;|- (field energy)

Quality factor of the cavity:
o, (field energy) o

7

power loss 2‘@‘
Characteristics of TE,_, mode Field Profile
. . . . . ik —ik :
For a circular waveguide with slowly varying radius 7 (z) , the TE ()= Ae™Z + B if @ > Opn . where @ ~ Xn€
.o : s . emn =
mode wave equation is expressed in a cylindrical coordinate Ce’* + De ™ if w, < Ou By

system as, mO—i
B, = f(2)J, [kppu(2)r] ™7
Applying the boundary condition on the side wall,

0

—B, 0 = ky,(2)=
or r=r,(z)~ mn w(Z)
where x,,,, is the n-th root of J;, (x) =0

Substituting to the wave equation, we obtain
2 2

5 kz2 (z2)= a)_z_ );m” above cutoff
¢
4L 2(2)| £(z) =0, where w(@)
dZ x2 0)2
K (z) = —— below cutoff

2@

The complex function of f(z) takes the general form,

/@) =]1()]e "
The dependences of f{z) and ®(z) on z indicate the nature of the
wave.

* For a pure traveling wave (4 = 0 or B = 0), [f(z)| is independent of z,
but @(z) is a linear function of z.

* For a pure standing wave (4 =t B), |f(z)| is a sinusoidal function
of z.

* For decaying waves at both ends, ®@(z) is independent of z.

Use the boundary conditions to determine |f(z)| and ®(z).




Boundary Conditions

Out-going wave boundary conditions: Initially there is a field
profile satisfying all the boundary conditions and then decaying
with time.

At both ends, 4=D=0 at z=z, and C=B=0 at z;.

—ik,(z1) f(z1), 1if @, > @, (21)
k. (z1) f(z1), if @, <@y (27)

f'(Zl)Z{

ik (z5)f(z5), if @, > @, (z5)
_KZ(ZS)f(ZS)’ if Wy < Oepp (ZS)

f'(Zs)={

Numerical Procedure

® With a proper guess of the value of , and O (0= v, +iw)).
® f is given at z=z, and /"' 1s set accordingly.
® [ntegrate from z, to z5 using Runge Kutta method

® Check the boundary condition at z5 and using Muller’s method
to guess the next root of w, and Q.

® [terative integration, each time with an improved guess for w,
will eventually converge to a correct solution for w, and f(z)
will satisfy all the boundary conditions.

Complex Boundary Condition (cbc sub-rountine)

Boundary condition at z=z, is given. However the boundary
condition at z=z5 needs to be checked.

ik, (z5) f(25), 1f @, > @, (25)
—k.(25)f(25), 1f @p <Dy (25)
f'(z5) =ik, (z5) f(z5), if @, > @pp,(25)
S'(z5)+K,(25) f(25), if @, <Oy (25)

Standard root-finding algorithms such as Muller’s method can be
readily used.

f'(z5)= {
or D(w) = {
There are a series of discrete solutions for @ corresponding to

different axial modes (assuming that the transverse mode number
m and n are given).

Comments

® It is clear that the solution for should be independent of the
positions of z, and z5 as long as they are in the uniform end
sections.

® Validity of the evanescent wave boundary condition requires
that the end waveguide radius (R, or R,) be smaller than the
cavity radius (R).

® [t should also be noted that the assumption of slowly varying
cross-section is violated at z=z, (Fig.1). This is justifiable only
if the left end waveguide (z < z,) is cutoff to the cavity mode. In
this case, total reflection from the left end takes place just as a
more exact model would predict.




ITI. Numerical Algorithm
How to integrate a differential equation?

2 2
K2(z) =%~ above cutoff
d 2 2 ¢ ry(2)
+£2(2) | £(2) =0, where
dz? 2 w*
Z( z)= —— below cutoff
The Runge-Kutta method: o (Z ) ¢

The second order equation shown above can be decomposed into
the form of coupled real differential equations of the first order.

d
[ =1 +if; e

f :fr+ifi jf fl

K =Re(k) +ilm(k?) =

k k k.. = = ~Re(k?) f, +1m(k? ) f
M

K, Koy Kz % £l ==1m(kZ) f, - Re(k? ) f;

III. Numerical Algorithm
Initial Boundary conditions at z,

The boundary conditions at z = z; can be written,

f,-(z1) = arbitrary real constant
f;(z1) = arbitrary real constant

k. (z1) fi(z20) + ki (21) [, (21),  if @, > @y, (21)
K (2) 1, (21) = K5 (2) fi(21), if @, <@gy (21)
—k fr(2)+ ki fi(z1), if @, > @y, (21)
K.ifr(21) + K2 fi(21), i @ <@y (z1)

ﬂ(zl):{

fi’(zl):{

[I. Numerical Algorithm
Final Boundary Conditions at z,

® A guessed value for o can now be integrated from z to zs.

® The resulting functions f.(zs), f{zs), f,'(zs) and f;'(zs) give f(zs)
and 1'(z).

® The procedure is to be repeated with an improved guess of
until the required accuracy is achieved.

IV. A Fortran Exercise

The program (named CAVITY.{) consists of a main program and the following
subprograms.
1. General purpose subprograms.
MULLER: finding the complex roots of an arbitrary complex function (see
Appendix B).
RKINT: performing integration of simultaneous differential equations of the first
order by the Runge-Kutta method (see Appendix C).
SSCALE and SPLOT (or BSCALE and BPLOT): plotting data conveniently in
characters (see Appendix D).

2. Subprograms written for CAVITY (It is recommended to go over the contents closely).
CBC: evaluating the function D() in Eq. (19) by integrating Eqs. (24)-(27) with
initial values given by Eqgs. (28)-(31).

DIFEQ: evaluating the derivatives in Eqs. (24)-(27).

RADIUS: evaluating the cavity wall radius as a function of z.

RHO: evaluating the wall resistivity as a function of z.

CLOSS: evaluating the wall loss factor derived in Appendix E (The loss factor has
been incorporated into the formalism in Appendix F.)




Procedures for Running Program Cavity.f

® To begin, the cavity dimensions , mode of interest, and
numerical instructions, etc. are specified in the main program.

® A guessed value of is then input into MULLER which calls
CBC to evaluate D(w). Subprogram CBC calls RKINT to
perform the integration from z, to z5. Subsequently, RKINT calls
DIFEQ to evaluate the derivatives at every z-step of the
integration.

® Finally, MULLER returns the solution for to the main program
which prints all the information of interest and calls SSCALE
and SPOLT (or BSCALE and BPLOT) to plot and .

® Common blocks are extensively employed for information
sharing (e.g. the cavity dimensions specified in the main
program and the field profile calculated in subprogram CBC)
between the main program and subprograms.

Cavity Dimensions and Calculated Results
Cavity dimensions used for numerical example

R R Ry L, L, 8

0.9cn 0.5c¢m t.1cem 11.7cm 3 cm 15 em 10°

cavity profile (drawn {o scale)
— [zr — 2
— L ]

7T
rof () o ::;{'b)

4

0.8 b

am -
aml
nl

/)] I

| E—— L

T E SR \_JJ -7
4 a o ia 20 28 30 @ & L 15 20 28 a0
z (em) z (em)

TE,,, mode field profile |f] and phase angle ® as functions of z for
the cavity shown above.

Wall Resistivity and Loss Factor

® Ohmic wall losses have been included in CAVITY through
subprograms CLOSS and RHO.

® Formulation of wall loss can be found in Appendix E.

® As a first exercise, we can ignore this effect (hence CLOSS
and RHO) by setting the wall resistivity to zero in the main
program.

® The TE A mode dispersion relation for a vacuum filled
waveguide,

cmn 2 2 2

w mn

2 2
0 — k2 - 1—(1+i)”05(1+ m_@ ]:0
n X

Check the Validity of the Results
(Convergence Test)

(i) When calling MULLER to solve for the root of a function (e.g. CF in
Appendix B), always monitor the number of times (e.g. ICONT in
Appendix B) that the function has been evaluated. For a well behaved
function, the number should be small (less than 10 per root). When the
number becomes too large or in the case MULLER is unable to find a
root, it is a warning signal of some numerical difficulty due to, for
example, erratic behavior of the function (discontinuities and sharp
spikes, etc.) or the presence of many closely spaced roots. The result
may be in question or the physics may be unexpected. The warning
signal can not be ignored.

(ii) After MULLER returns a root, always insure that the resulting function
value (e.g. VALUE1 and VALUE2 in Appendix B) is vanishingly small
relative to the largest terms of the function. For example, if the function
is composed of terms of the order of 10'°, a function value of 10> may be
considered vanishingly small (beware of the number of significant digits
the computer is capable of handling).

44




Check the Validity of the Results 11

(iii) A valid root is not necessarily the desired root. For example,
we provide a guessed value for the /=2 root and call
MULLER to search around it for the correct =2 root.
MULLER will return a different root (e.g. /=1 or 3) if the
guessed value happens to be a better guess for that root. A
reliable way to verify the / number of the root returned by
MULLER is to count the number of peaks in the versus z.

(iv) Even with all these checks, there is still no guarantee that the
results are free from numerical errors. We must also check
whether the step size in the z-integration is sufficiently fine to
insure convergence of results.

Check the Validity of the Results III

Figures below show a typical convergence test. The resonant frequency and quality factor Q
are plotted as functions of the total number of steps in the z-integration (named IZSTEP in
program CAVITY). Note that the positions of the junction points (z,, z3, and z, in Fig. 1) and
hence the cavity dimensions, as resolved on the uniformly spaced axial grid points for the z-
integration, are subject to an uncertainty in the magnitude of the step size. This is the
primary reason for the fluctuations of and Q with respect to IZSTEP in the approach to
convergence. The slow convergence shown in Fig. 4 is predominantly due to the uncertainty
of resolving junction point z, (where there is a discontinuity in wall radius) on the discrete
grid points. Generally speaking, the minimum IZSTEP required for good convergence
depends on the circuit geometry and the ratio of the total circuit length to the guide
wavelength. Too large an IZSTEP can also bring in accumulation of round-off errors.

470 —

wo| (b)
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1zstep izstep
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0 200 400 €00 800 1000 1200 1400 1600 1800 0 200 400 600 800 {000 200 1400 (600 1800

Does the Numerical Results Make Sense?

Even computed correctly, numerical results can not be trusted
unless they make sense physically. We may start by asking some
universal questions: Is the energy conserved (see the slightly
positive slope of in Fig. 3a)? Do the results reduce to well known
limits [see Exercises (1) below]? Do they exhibit reasonable
parametric dependence [see Exercises (2)-(4)]? Do they conform to
known scaling laws [see Exercise (5)]? Obtaining answers to these
questions is a sure way to become familiar with the problem. We
are now ready to go deeper into the problem [see Exercises (6)-(11)]
and, for the best reward of all, let our imagination take us to the
unexplored territories of research.

Always check carefully!

V. Discussion

® Computer programs based on the time domain formalism (such as program
CAVITY) are extremely effective in that they directly evaluate the resonant
frequency, Q, and field profile. They are essential tools for gyrotron designs.
Many runs can be rapidly made to achieve the desired resonant frequency and
Q, to optimize the field profile and maximize mode separation, etc. However,
because of its inability to scan the frequency, the time domain formalism does
not present a complete physical picture of the open cavity. The low Q nature
of the open cavity brings about some issues that can only be clarified with a
spectral domain analysis [see Exercises (8)-(11) and Appendix F].

® Resonances of the type taking place in an open cavity are common in
microwave circuits which often contain slightly mismatched junctions
between various circuit elements. Single path reflection from one mismatched
junction results in a standing wave pattern (measured by VSWR). Multiple
reflections between two mismatched junctions result in resonances, much like
those of the open cavity. Thus, a circuit with multiple mismatched junctions
behaves like coupled open cavities. The resulting circuit resonances are seen
on an oscilloscope as multiple spikes superimposed on a swept frequency
signal.




Exercise (1)

1. For the open cavity of Fig. 1 with dimensions given in Table I,

the resonant frequency of the TE,;; mode is 9.839 GHz (see Fig.

4). For an enclosed cylindrical cavity with the same radius (0.9
cm) and length (11.7 cm) as those of the main body of the open
cavity, the resonant frequency of the TE,;; mode is 9.851 GHz.
Explain the difference qualitatively.

Sol: Because of the fringe field, the open cavity has an effective
length longer than L, hence the resonant frequency (of the £ >0
modes) is lower than that of an enclosed cavity of length L. It is
worth noting that for the / =0 (TM) modes of an enclosed cavity
for which the axial field profile is uniform, an opening at either
end will impose an axial mode structure and therefore increase
the resonant frequency.
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Exercise (2)

2. Use program CAVITY to show how the quality factor Q of a
given mode varies with the output taper angle of the open
cavity (keeping other parameters fixed). Interpret the results
qualitatively.

Sol: Larger 0 results in more reflection from the open end, and

hence lower diffraction loss and higher Q.
500
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Exercise (3)

3. For the cavity dimensions provided in Table I, the quality
factors of the first three modes (/=1, 2, 3) are, respectively,
439, 116, and 56 (see output data in Appendix A). Give two
reasons to explain the rapid drop of Q with the axial mode
number .

Sol: Higher 1 number modes have higher resonant frequencies
which result in (i) less reflection from the open end and (ii)
higher group velocity of the wave. Both effects lead to greater
diffraction loss through the open end and hence the decrease in
0 values

Exercise (4)

4. Use program CAVITY to show how the quality factor of a

given mode varies with the cavity length L (keeping other
parameters fixed). Give three reasons to explain the rapid
increase of Q with L.

Sol: A shorter cavity stores less field energy which further reduces
the Q value. 2000

1500

1000

500




Exercise (5)

With reference to Fig. 1, assume that a traveling wave propagating to the left
is totally reflected at z=z, and a traveling wave propagating to the right is
partially reflected at z=z; with reflection coefficient . Show by the multiple
reflection approach (see R.E. Collin, II Foundations for Microwave
Engineering", 1st edition, pp. 340-343 and Eq. (49) in Ref.10 of Appendix F)
that the diffraction Q is approximately given by
Q N |1_,|1/2 4 (L)2
1-|r] ¢ "2

where A is the free space wavelength of the resonant mode. Compare this
relation with the scaling of Q with respect to 0, /, and L as considered in
Exercises (2)-(4). Note that depends on the taper angle and resonant
frequency and that is a function of and L. If wall losses are included, show
that the combined diffractive/ Ohmic Q is given by the above equation with
I" replaced by I'exp(—2k,L), where is the attenuation constant which can be
evaluated from Eq. (10) of Appendix E.

(o) actual cavity (b) analytical model
I —=1F )
R | T
_z|=0 z= z=0 z=

frequency and Q of the cavity. 1000
(@) U5 @D vefieetion
7. Use program CAVITY to verify e 30 9B reflection

== — no reflection
Fa

Exercise (6) and (7)

6. Assume that the output waveguide section of the open cavity

(see Fig. 1, z > z,) 1s terminated in a slightly mismatched load.
Explain qualitatively how the load will affect the resonant

your answer to Exercise (6) by
adding a smooth bump on the

wall of the output waveguide to 200 [
simulate the effects of the o B e e
mismatched load. oo _ YR B

g [ (b) 00005 4B veection ]

----- 30 dB veflection
= == no reflection

Fig. 9. An iris is added Lo the oulput waveguide to model the 3
clfects of a mismatched external circuit. -
: 1,006

Exercise (8)
8. The lack of a sharp boundary at the output end of the open

cavity is expected to result in a frequency sensitive field profile
for a resonant mode, as shown in Fig. 6 of Appendix F. How
would the frequency dependent field profile affect the spectral
shape of a resonant mode, measured at a fixed position in the
cavity, in response to a swept frequency source incident from
the output waveguide into the cavity?

_

Exercise (9)

9. In Exercise (8), if the fixed-position spectrum is measured at
different points along the length of the cavity, will the spectral
shape of a given mode be different from point to point? Does
this imply that probes located at different axial positions in the
cavity will measure different resonant frequencies and Q's for
the same mode? } B

a8 :
£
»
06 5
&
'\'r -
= § spectral respunse
%
0.4 i at z=z2,4+L/2
5 z=z,+ L5
+L
0.2 i
i
3 4 o n Ly
!-Z. P e
- de E -t B, 4
n.88 .00 1.02 104 LO6 LOR 14D 142
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Exercise (10)

10. Write a computer program based on the spectral domain formalism in Sec. II of
Appendix F to:
« verify your answers to Exercises (8) and (9)
* calculate the reflection coefficient assumed in Exercise (5) as a function of
the wave frequency.
 calculate the reflection coefficient at the smooth bump assumed in Exercise
(7) as a function of the wave frequency.

Sol: RFS or RFS2

Exercise (11)

11. Program CAVITY calculates Q by its time domain definition (denoted by
superscript “t”) 0 = %

O,
2|
While the spectral domain formalism yields Q by its spectral domain definition
(denoted by superscript “w” Q(w) N

Aw
where A w is the FWHM bandwidth. Compare numerical runs made with
program CAVITY with those made with the program developed in Exercise (10)
to show that, for the same mode of a low Q open cavity, the two definitions of O
do not yield the same result and Q(,) S Q(w)

Explain this result qualitatively.

f(x,t):Zf,(x)e 7

i

fx0)= J— [ rexnede = J—qum

o) = Zf( >M+—w/zgm Zf P —CTT

=. = Q>0 58

Appendix: Muller’s Method

PROGRAM TEST 1<—To solve for :Mmﬁx}:rz +1=0
IMPLICIT REAL (A, B, D-H, J-Z), C

DIMENSION CROOT (2)

COMMON ICONT

EXTERNAL CF

EP1=1.0E-6

EP2=EP1

IMAXIT=50

ICONT=0 <—for monitoring the number of times funcrion CF is called by MULLER
CROOT (1) = CMPLX(0.5, Olﬂ\gwm,d values for roots

CROOT (2) = CMPLX(0.5, 0.5) /
no. of roots known  values of roots (user supplies guessed values, MULLER returns correct values)
t

T accuracy desired FALSE < search for complex roots
CALL MULLER (0, 2, CROOT, IMAXIT, EP1, EP2, CF, FALSE.) .TRUE.—=search for real roots
T T

no. of roots wanied  max. no. of iterations  complex functions fix)

VALUE1=CABS{CF(CROOT(1)))

VALUE2=CABS(CF(CROOT(2)))

WRITE(6,1}) CROOT(1) , VALUE1 , CROOT(2) , VALUE2, ICONT
1 FORMAT( ROOT1='1PE11.4,,,1PE114, (VALUE1=,IPE8.1, ) /
&' ROOT2=\1PE114,, " 1PE114, (VALUE2='1PE8.1,} /
&' ICONT='14)

STOP

END

FUNCTION CF (CROOT)<—jfunction provided by user to evaluate f{x) when called by MULLER
IMPLICIT REAL (A, B, D-H, J-Z), COMPFLEX (C)

COMMON ICONT
CF=CROOT**2+1.0 . ;
ICOMTAIOONTAL Note: Muller’s method is discussed in
=l Conte and de boor Elementary Numerical
Results returned by MULLER :  {cf: analytical solution x=4{) Analysis”, (3 edltlon Sec. 3.7).

ROOTI=83027E-12, 1.0000E+00 (VALUEI= 1.7E-11)
ROOT2=-1.9052E-10, -1.0000E+00 (VALUE2= 6.3E-10)
ICONT= 10 <Toval no. of times CF was called to find ROOT] and ROOT2

Appendix: Runge-Kutta’s Method (RKINT)

The test pragram solves for (dPfdeJy= -sin t for y{t), given y(0)=0, and (didtjy@)=1.
First, we split ([drJy= -sin 1 into 2 first order differential equations for

Fofeplm e and yait)fm (dide}ymy], and let the independent variable ¢ be wit).

Thas, we have

fellde)y, =3 { ¥ (0)=0
(didt)y =-sin t with intial conditions: ] ¥ (el
(it = 1 e (0)=0

FROGRAM TEST 2

IMPLICIT REAL (AB, D-H, J-Z) Note: when using RIINT 1o solve a differential
DIMENSION Y (900, DY (90), Q{90) equation, always check the coaverpence of resulis
EXTERNAL DERIVY with respect to the step size (DELT)
Pl=3.1415927

TO=0.0 <—initial t

Y(3)=T0
ITMAX=40<—no of integration steps between t=0 and rax (2.
DELT=(TF-TOYDFLOAT (TTMAX)<—step size for i- integration (A 1)

DO 101=1,3
10 QTp=.0s—accuracy indicator (inidal values set ar 0).
wger supplies ¥, (1), ¥oltho... REINT returns yy (r+A8), ¥y (1+20),. ...

DO 10HT=1, ITMAX T —values of ¥’ returned by RKINT
100 CALL RKINT (DERIVY, Y, DY, Q. 1,3, DELT)
i 5 u--a-ﬁma.udlay«mfoumbﬁmgvaw

subrouti pwwfed by wser to evaluate ¥y, ¥'y..ete. when called by RKINT.
PRINT 1, Y(3), Y:n. Yi2)
I FORMAT " T=', IPEI3.6,, Y(I}="IPE13.6., Y(2)='IFE13.6)

END ¥ dydt last equation to be integrated

SUBROUTINE DERIVY (Y, DY, IEQFST [EQLST)

IMPLICIT REAL {A, B, D-H, 1.Z)  Tfirst equation to be integrated
DIMENSION Y(1), D¥(1)

DY(1}¥(2)

DY{2}= xSL\l (8 (EN]

DY (310

RETURN

END

Resuits retwrned by REINT at =22 of. analyical solutions
T=1ST0M9TE+00, Y{1)=9.99999TE-01, ¥{2)=-3 260079E-07 Folthm yitjmain
waltimyiti=cos ¢
alimg 2 60




Appendix: Dispersion Relation for a Lossy Waveguide
Derivation of the loss factor in Eq. (19) of Appendix F.

Jackson, Chap. 8

cmn 2 2 2
i mn

2 2
w? — k22 - 1—(1+i)”c5[1+ m__@ j:o
X

Spectral-Domain Analysis of Open Cavities

Reason: Cold tests of open cavities almost always employ the
method of frequency sweeping and Q is measured by its spectral
domain definition (hence denoted by superscript ?) where Aw is the

full width between the half maxima of the resonant line.

Quality factor of the cavity:
Time-domain definition:

Q(I) —w, field energy o,

i

powerloss 2 |a),|

Frequency-domain definition:

Q(w) _ % What is the difference
Aw between these two definitions?

II. Numerical Approaches for the Spectral Model

3 assumptions:

» The waveguide radius changes slowly and there is no mode
conversion.

* A resonant mode is initially present in the cavity. All fields vary
with time as exp(-iwf).

* The end sections are uniform to ensure the correctness of
calculation.

Time-domain model:

"R, . " .
CE T Tk, mode 21 %4 F - o?cxir;l'oing = a)r + la)j (Where a)i < O)
T~ TEme wave

fLrfp—— L ———]| - L:’|m

ineident

reflected
TE . wave

r

Frequency-domain model:
9

Complex reflection coefficient

Numerical Model
® With a proper guess of the value of ' (I'=1T", +i I')).
f(Zl ) = elkz (Zl )Zl + Fe_lkz(zl )Zl

where o, > o
f!(zl) — lkZ (eikz(zl)zl _Fe—ikz(zl)zl ) r

cmn

® f is given at z=z, and /" is set accordingly.
® Integrate from z, to z; using Runge-Kutta method

® Check the boundary condition at z; and using Muller’s method
to guess the next root of I".

® [terative integration, each time with an improved guess for o,
will eventually converge to a correct solution for @, and f{z) will
satisfy all the boundary conditions.




Frequency Response

.o r
Table I. Nornalized cav ity di mensions used for numerical 0.8 | =1
examples (cf. Fig. 1)
L YA /R 0
13 0.56 1.22 10° LS o
o
5
0.4
0.2 |-
L
0.0 L 1 1 1 1 1
0.98 r.og i.02 1.04 1.06 i.08 .o 112

w/w,

Fig. 3. Caculated maximum-field spectrum of the ’l‘E”[ modes in

response to a TEy wave of constant amplitude incident
from the oulput waveguide (see Fig. 2). || is the spatial
maximum of the field amplitude at a given [requency.
|Tmaxl and |lwin| are, respectively, the spectral maxinum
and minimum of a given mode. w is the angular cutoff
frequency of the main body of the cavily (radius R).
Cavily parameters of Table [ were used.
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Numerical Results

Numerical results obtained under the temporal and spectral
models for the cavity dimensions in Table I with different output
taper angles 6 . TE,,, were calculated. f; is the cutoff frequency of
the main body of the cavity.

P [ é'] Jrg“) QM Qe QM Ql"], U"L"E

!: f: Q-c! Qr:f Um-xl1
q° 1 1.0069 1.0069 311.80 29886 1.6880 1.5166 0.117
40 2 1.0275 1.0278 78.66 62.56 0.8173 0.6496 0.372
4° 3 1.0622 1.0629 36.20 —— 0.5280 —— 0.604
7° 1 1.0071 1.0072 402.24 390.31 2.1750 2.1102 0.071
7° 2 1.0283 1.0286 104.28 092.66 1.0817 0.9607 0.243
™ 3 1.0627 1.0634 48.96 3391 07132 04935 0.461
7° 4 1.1093 1.1108 2938 —— 0.5239 ——  0.648
10° 1 1.0074 1.0074 438.84 430.44 23718 2.3262 0.057
10° 2 1.0292 1.0293 11536 106.08 1.1947 1.0983 0.201
10° 3 1.0646  1.0G50 59.44 44.49 0.8048 0.6454 0.378
10° 4

1.1124  1.1130 M4l — 0.6102 — 0.543

|
1

Frequency Tunable Terahertz Gyrotron 394 GHz
Using Open Cavity Structure

Novel mechanism: Reflected gyrotron backward-wave oscillator

Frequency tunability:
Linear and nonlinear field profiles

m -
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o
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contraction for the
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Linear and nonlinear field projfles (an.)

T. H. Chang*, T. Idehara, 1. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency tunable gyrotron using
backward-wave components”, J. Appl. Phys. 105, 063304 (2009).

Example II

Frequency Tunable Terahertz Gyrotron 203 GHz
With Mode Selectivity

(a) cutoff interaction output
section section section
An on-going research with T £ 300
. . == o
Japan Fukui Univ. At . g2
e © fw n N\ PR}
=] Toe” | FNERF
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s 3tk o212
’l
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N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara o 1 =
and 1. Ogawa, “Theoretical investigation of a high E‘ 1.5 50, 4204 =2
efficiency and broadband sub-terahertz gyrotron", a 1+ 0"\ 'g.
Appl. Phys. Lett. 96, 161501 (2010). = 7-3% ]
° oor velocity spread10% | 20
" velocity spread10%
75 80 85

By (kG)




Ghe “Gnd of Cpen Coavity




