
Chapter 6 Microwave ResonatorsChapter 6 Microwave Resonators
Part I
1. Series and Parallel Resonant Circuits
2. Loss and Q Factor of a Resonant Circuit
3. Various Waveguide Resonators
4. Coupling to a Lossy Resonator

Part II
 Time-Domain Analysis of Open Cavities

Part III
 Spectral-Domain Analysis of Open Cavities

1

6.1 Series and Parallel Resonant Circuits
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 A resonator with loss can be treated as a lossless resonator whose resonant 
frequency ω0 is replaced by a complex frequency ω0(1+j/2Q) 3

Parallel Resonant Circuit
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Parallel Resonant Circuit
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6.2 Transmission Line Resonators

 All realistic resonators have a finite Q=f0 /BW
Nonzero bandwidth       Resonator is lossy
Transmission line resonator has an 
Lossy transmission line 

0 

(1) Short circuit λ/2 line      series resonance
 If loss is small, 
 N

1,  tan .     
is small      Near resonance, 

 What is the equivalent circuit?
0 ,   is small.      
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6.2 Transmission Line Resonators

(1) Short-circuit λ/2 line section
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(2) Short-circuit λ/4 line     parallel resonance
If l i ll 1 t   If loss is small,

 Near resonance,
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Transmission Line Resonators

(3) Open-circuit λ/2 line     parallel resonance
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Example 6.2
A half-wave microstrip resonatorA half wave microstrip resonator

350-Ω line, /2 resonator, 1.59 mm, 2.2,  tan 10 ,  5 GHz.rd f      
Calculate its  value.
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6.3 Rectangular Waveguide Cavity
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Example 6.3
Design of a Rectangular Waveguide CavityDesign of a Rectangular Waveguide Cavity

440 mm, 20.0 mm, 2.25, tan 4 10 . If  5 GHz, 
fi d d l f
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6.6 Excitation of Resonators

Gap Coupling to a Probe coupling toGap-Coupling to a 
Micro resonator cavity

Probe-coupling to
A rectangular WG cavity

(1) The penetration depth h is tunable 
For impedance adjustment.

(2) The probe can be sliding along z.
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( ) p g g

Coupling to Microwave Resonators

(a) A microstrip transmission line resonator gap coupled to a microstrip feed line.  
(b) A rectangular cavity resonator fed by a coaxial  probe. 
(c) A circular cavity resonator aperture coupled to a rectangular waveguide. 
(d) A dielectric resonator coupled to a microstrip feed line. 
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( ) p p
(e) A Fabry-Perot resonator fed by a waveguide horn antenna. 

A Gap-Coupled Microstrip Resonator

 Temporarily treat the lossy resonator as 
losses and apply the concept of complex 
frequency to evaluate its loss term R

0
1 cot tanZZ bC

   0

0
0 0

tan
;          

tan
in c

c in
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Z bCb Z C z j j
Z Z b

 



     




 Resonance occurs at 
 If                  is close to the first resonant frequency of the unloaded resonator.
 The coupling of the capacitor C will lower its resonant frequency

0,  tan 0,  tan  ,in c cz b b      
11,  cb 

 The coupling of the capacitor C will lower its resonant frequency.
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The Coupling Coefficient g
b Z C0

0

 
1 cot

c

in
in

b Z C

ZZ Cz j
Z Z









  



0 0
tan

tan

in

c

c

j
Z Z

b
j

b




 




     22

2 2 2
1

1sec 1
tan

cin

c p pc c c

bdz d
j j j j

d b d v vb b b

  
   


    

  


           1 1

1

11
2 1

1 1 1 2 2 2
1 12

j
Qin

in in
c c c

dz jjz z
d b Qb b

 



         
  

 
  

  
          

1

        0
2

2
0  The input resistance  and coupling cofficient .

2 cZ QZ
R g

b R
b

  22

          2 ,  1,  undercoupled

2 1 critically coupled

c

c

c

Qb

b Q g

b Q g

R





 

 


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         2 ,  1,  critically coupled

          2 ,  1,  overcoupled
c

c

b Q g

b Q g



 



Smith chart for the gap-coupled microstrip resonator
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Example 6.6
D i f G C l d Mi t i R tDesign of Gap-Coupled Microstrip Resonator

50-Ω microstrip feedline, 50-Ω microstrip /2 resonator with 21.75 mm, 

1

1.9,  0.001 dB/mm. Find the coupling capacitor and the resonant

frequency .
reff

f
  

Sol: 11

0
3 10 5 GHz

2 2 21.75 1.9
p

g ff

v cf
 


   

 2 2 21.75 1.9

628(or 200 )
2 2

g reff

Q



  
 

   



2 2

0.05
2 2 200cb
Q

 
 


  





9
0

2 2 200
0.05 0.032 pF

2 5 10 50
c

Q
bC
Z



 



  
  
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0

1

2 5 10 50
4.918 GHz(obtained by a root-searching process)

Z
f

    



6.6 Excitation of Resonators
Critical coupling : A resonator is matched to a feedline to have max  
power transfer at resonant frequency.

2
Max power transfer Conjugate matching

inZ R jL   



p f q y

p j g g

0,  See Chapter 2.
in in

P P
R X
 

 
 

 At resonance,

* ,   ,  
in in

in g in g in gZ Z R R X X    

0 0,  or 0,  inZ R Z      ,
Unloaded
External 

0Q L R

0 0eQ L Z

0 0, , in

 Coupling coefficient 
g < 1, resonator is undercoupled to the feedline.

0eg Q Q Z R 

g = 1, resonator is critically coupled to the feedline.
g > 1, resonator is overcoupled to the feedline.
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Smith chart illustrating coupling to 
series RLC circuitseries RLC circuit
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Time-Domain Analysis of Open Cavities
Part II

Time Domain Analysis of Open Cavities
Lecture Notes and Computational Exercises＊

ffor 
Graduate Course "Microwave Physics and Applications"

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. 
and

Graduate Research and Training in Advanced Microwave 
and MM Wave Thermionics

University of California, Los Angeles, California, U.S.A. 

*Developed under the Agreement on Academic Exchange and. Cooperation 
between Center for High Frequency Electronics (The University of California] Los 
Angeles) and High Frequency Electrodynamics Laboratory (National Tsing Huag ) g q y y y ( g
University)

The PowerPoint file is based on Prof K R Chu’s lecture notes
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The PowerPoint file is based on Prof. K. R. Chu s lecture notes –
Time-Domain Analysis of Open Cavities.

Time-Domain Analysis of Open Cavities

1. Introduction

2. Formulation

3. Numerical Algorithmg

4. A Fortran Exercise

i i5. Discussion

6. Appendix
• Dispersion relation for a lossy waveguide
• Complex-root finding by Muller’s method (Fortran)

I i f diff i l i i R K (F )• Integration of differential equation using Runge-Kutta (Fortran)
• Spectral domain analysis of open cavity
• Solution to exercise
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• Solution to exercise 

I. Introduction
Caption: Illustrative model of an open
cavity. Section z  z2 is a cutoff waveguide
(for electron beam entrance). The section(for electron beam entrance). The section
between z2 and z3 comprises the main body
of the cavity. The section between z3 and z4
is slightly tapered to provide partialg y p p p
reflection back to the cavity and partial
transmission into the output waveguide (z 
z4).

• Open cavities are employed in gyrotrons for generation and 
extraction of high power millimeter/terahertz radiation.extraction of high power millimeter/terahertz radiation.

• The resonant characteristics depends on the structure. This is a 
low-Q resonant circuit due to the open-end structure.

• The materials are self-contained and self-explanatory.
• A complementary spectral domain model can be found in
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• A complementary spectral-domain model can be found in 
Appendix.



II. Formulation
Consider a typical open cavity
formed of multiple sections of
uniform and linearly tapereduniform and linearly tapered
structures. Find the field profile
and the Q-factor.

3 assumptions:
• The waveguide radius changes slowly and there is no mode 

d e Q c o .

e wavegu de ad us c a ges s ow y a d t e e s o ode
conversion. 

• A resonant mode is initially present in the cavity. All fields vary 
with time as exp(-iωt). 

• The end sections are uniform to ensure the correctness of 
calculationcalculation.

 (where  < 0.)r i ii    
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( )r i i

Time-Domain Analysis

zThe time dependence of a field component (say ) is B

z ~ i rt i ti tB e e e   

2 2Field energy ~ ~ , ( <0)it
z iB e  

Power loss ~ (field energy) = 2 (field energy)i
d
dt

 

Q lit f t f th it

dt

Quality factor of the cavity:

 field energyr rQ
 

 
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power loss 2 i

Q


 

Characteristics of TEmn mode
For a circular waveguide with slowly varying radius rw(z) , the TE 
mode wave equation is expressed in a cylindrical coordinate 
system as,

 ( ) ( ) im i t
m mnzB f z J k z r e  

Applying the boundary condition on the side wall,

0 ( ) mnxB k
( ) 0     ( ) , 

( )
where is the -th root of ( ) 0

w
mn

mn
w

mn m

r r zzB k z
r r z

x n J x

   


 where  is the th root of ( ) 0mn mx n J x
Substituting to the wave equation, we obtain

22 x 2
2 22

2
2 2 2

( ) above cutoff
( )

( ) ( ) 0, where 

mn
z

w
z

xk z
c r zd k z f z

d


 

  
   

   
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2 2 2
2

2 2( ) below cutoff
( )
mn

z
w

dz xz
r z c


     



Field Profile
 , if

( ) ,  where 
if

z z

z z

ik z ik z
r cmn mn

cmnz z w

Ae Be cf z
rCe De 

  


 





   
 

The complex function of f(z) takes the general form,
( )( ) ( ) i zf f 

, if wr cmnCe De   

The dependences of  f(z) and Φ(z) on z indicate the nature of the 

( )( ) ( ) i zf z f z e 

wave. 

• For a pure traveling wave (A = 0 or B = 0) |f(z)| is independent of z• For a pure traveling wave (A = 0 or B = 0), |f(z)| is independent of z, 
but Φ(z) is a linear function of z. 

• For a pure standing wave (A = ± B),  |f(z)| is a sinusoidal function p g ( ), |f( )|
of z.

• For decaying waves at both ends, Φ(z) is independent of z. 

32
Use the boundary conditions to determine |f(z)| and Φ(z).



Boundary Conditions
Out-going wave boundary conditions: Initially there is a field 
profile satisfying all the boundary conditions and then decaying p y g y y g
with time. 

A b h d A D 0 d C B 0At both ends, A=D=0 at z=z1 and C=B=0 at z5. 

1 1 1( ) ( ) if ( )ik z f z z   1 1 1
1

1 1 1

( ) ( ), if ( )
( )

( ) ( ), if ( )
z r cmn

z r cmn

ik z f z z
f z

z f z z
 

  


   

5 5 5
5

( ) ( ), if ( )
( )

( ) ( ) if ( )
z r cmnik z f z z

f z
z f z z

 
  


    5 5 5( ) ( ), if ( )z r cmnz f z z   
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Numerical Procedure

 With a proper guess of the value of ωr and Q (ω= ωr +iωi).

 f is given at z=z1 and f ′ is set accordingly.

 Integrate from z1 to z5 using Runge Kutta method

 Check the boundary condition at z and using Muller’s method Check the boundary condition at z5 and using Muller s method 
to guess the next root of ωr and Q.

 Iterative integration, each time with an improved guess for ω, 
will eventually converge to a correct solution for ω, and f(z) 

ill ti f ll th b d ditiwill satisfy all the boundary conditions. 
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Complex Boundary Condition (cbc sub-rountine)

Boundary condition at z=z1 is given. However the boundary 
condition at z=z5 needs to be checkedcondition at z z5 needs to be checked. 

5 5 5
5

( ) ( ), if ( )
( ) z r cmnik z f z z

f z
 

  

5 5 5

5
5 5 5

5

( )
( ) ( ), if ( )

( ) ( ) ( ) if ( )
cmz r n

f z ik z f z z

f z
z f zz

 

  

  

  

5 5 5 5

5 5 5 5
o

( ) ( ) ( ), if ( )
( )

( ) ( ) ( ),
 

if ( )
r z r cmn

z r cmn

f z ik z f z z
D

f z z f zz
 


  




  


Standard root-finding algorithms such as Muller’s method can be 
readily used.

There are a series of discrete solutions for ω corresponding to 
different axial modes (assuming that the transverse mode number 
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( g
m and n are given).

Comments

 It is clear that the solution for should be independent of the
positions of z and z as long as they are in the uniform endpositions of z1 and z5 as long as they are in the uniform end
sections.

 Validity of the evanescent wave boundary condition requires
that the end waveguide radius (Rl or R2) be smaller than the

it di (R)cavity radius (R).

 It should also be noted that the assumption of slowly varyingp y y g
cross-section is violated at z=z2 (Fig.1). This is justifiable only
if the left end waveguide (z  z2) is cutoff to the cavity mode. In
hi l fl i f h l f d k l jthis case, total reflection from the left end takes place just as a

more exact model would predict.
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III. Numerical Algorithm
How to integrate a differential equation?

22
2

2 2( ) above cutoffmn
z

xk z 
 

  2 22
2

2 2 2
2

( ) above cutoff
( )

( ) ( ) 0, where 

( ) below cutoff

z
w

z
mn

k z
c r zd k z f z

dz xz 


  

   
     The Runge-Kutta method: 

The second order equation shown above can be decomposed into 

2 2( ) below cutoff
( )

z
w

z
r z c

  


the form of coupled real differential equations of the first order.

r if f if  r r
d f f
dz

 

2 2 2R ( ) I ( )

r i

r i

f f f
f f if

k k i k

   
i i

dz
d f f
dz



 
2 2 2Re( ) Im( )   z z z

ziz zr

k k i k
kk k

i

  

    
      

2 2Re( ) Im( )z r z ir
d f k f k f
dz


    

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ziz zr
i
 

     
      2 2Im( ) Re( )i z r z i

d f k f k f
dz


    


III. Numerical Algorithm
Initial Boundary conditions at zInitial Boundary conditions at z1

The boundary conditions at z = z1 can be written,

 1

1

( ) arbitrary real constant
( ) arbitrary real constant

r

i

f z
f z


 

1 1 1 1 1
1

1 1 1 1 1

( ) ( ) ( ) ( ), if ( )
( )

( ) ( ) ( ) ( ), if ( )
zr i zi r r cmn

r
zr r zi i r cmn

k z f z k z f z z
f z

z f z z f z z
 

   
 

     1 1 1 1 1

1 1 1
1

( ) ( ) ( ) ( ), if ( )

( ) ( ), if ( )
( )

(

zr r zi i r cmn

zr r zi i r cmn
i

z f z z f z z

k f z k f z z
f z

f

   

 


   

) ( ) if ( )f

  

1 (i
zi rf 1 1 1) ( ), if ( )zr i r cmnz f z z    
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III. Numerical Algorithm
Final Boundary Conditions at zFinal Boundary Conditions at z5

 A guessed value for ω can now be integrated from zl to z5. 

 The resulting functions f (z5) fi(z5) f '(z5) and fi'(z5) give f(z5) The resulting functions fr(z5), fi(z5), fr (z5) and fi (z5) give f(z5) 
and f'(z5).

 The procedure is to be repeated with an improved guess of 
until the required accuracy is achieved. 
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IV. A Fortran Exercise

The program (named CAVITY.f) consists of a main program and the following 
subprograms. 
1 G l b1. General purpose subprograms. 

MULLER: finding the complex roots of an arbitrary complex function (see 
Appendix B). 
RKINT f i i t ti f i lt diff ti l ti f th fi tRKINT: performing integration of simultaneous differential equations of the first 
order by the Runge-Kutta method (see Appendix C). 
SSCALE and SPLOT (or BSCALE and BPLOT): plotting data conveniently in 
characters (see Appendix D)characters (see Appendix D). 

2. Subprograms written for CAVITY (It is recommended to go over the contents closely). 
CBC: evaluating the function D( ) in Eq (19) by integrating Eqs (24)-(27) withCBC: evaluating the function D( ) in Eq. (19) by integrating Eqs. (24) (27) with 
initial values given by Eqs. (28)-(31). 
DIFEQ: evaluating the derivatives in Eqs. (24)-(27). 
RADIUS: evaluating the cavity wall radius as a function of z.RADIUS: evaluating the cavity wall radius as a function of z. 
RHO: evaluating the wall resistivity as a function of z. 
CLOSS: evaluating the wall loss factor derived in Appendix E (The loss factor has 
been incorporated into the formalism in Appendix F.)
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Procedures for Running Program Cavity.f
 To begin, the cavity dimensions , mode of interest, and 

numerical instructions, etc. are specified in the main program. 

 A guessed value of is then input into MULLER which calls 
CBC to evaluate D(ω). Subprogram CBC calls RKINT to 
perform the integration from zl to z5. Subsequently, RKINT calls 
DIFEQ to evaluate the derivatives at every z-step of the 
integrationintegration. 

 Finally, MULLER returns the solution for to the main program 
hi h i t ll th i f ti f i t t d ll SSCALEwhich prints all the information of interest and calls SSCALE 

and SPOLT (or BSCALE and BPLOT) to plot  and .

 C bl k t i l l d f i f ti Common blocks are extensively employed for information 
sharing (e.g. the cavity dimensions specified in the main 
program and the field profile calculated in subprogram CBC)
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program and the field profile calculated in subprogram CBC) 
between the main program and subprograms.

Cavity Dimensions and Calculated Results 
Cavity dimensions used for numerical example

TE mode field profile |f| and phase angle Φ as functions of z for
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TE111 mode field profile |f| and phase angle Φ as functions of z for 
the cavity shown above. 

Wall Resistivity and Loss Factor

 Ohmic wall losses have been included in CAVITY through 
subprograms CLOSS and RHOsubprograms CLOSS and RHO. 

 Formulation of wall loss can be found in Appendix E. 

 As a first exercise, we can ignore this effect (hence CLOSS 
and RHO) by setting the wall resistivity to zero in the main 
program.

 The TEmn mode dispersion relation for a vacuum filled 
waveguide,

2 2  2 2
2 2 2 2

2 2 21 (1 ) 1 0c
z cmn

w mn mn

mk c i
r x m
   



  
           
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Check the Validity of the Results
(Convergence Test)(Convergence Test)

(i) When calling MULLER to solve for the root of a function (e.g. CF in 
Appendix B), always monitor the number of times (e.g. ICONT in pp ) y ( g
Appendix B) that the function has been evaluated. For a well behaved 
function, the number should be small (less than 10 per root). When the 
number becomes too large or in the case MULLER is unable to find anumber becomes too large or in the case MULLER is unable to find a 
root, it is a warning signal of some numerical difficulty due to, for 
example, erratic behavior of the function (discontinuities and sharp 
spikes, etc.) or the presence of many closely spaced roots. The result 
may be in question or the physics may be unexpected. The warning 
signal can not be ignoredsignal can not be ignored.

(ii) After MULLER returns a root, always insure that the resulting function 
value (e.g. VALUE1 and VALUE2 in Appendix B) is vanishingly smallvalue (e.g. VALUE1 and VALUE2 in Appendix B) is vanishingly small 
relative to the largest terms of the function. For example, if the function 
is composed of terms of the order of 1010, a function value of 102 may be 

id d i hi l ll (b f th b f i ifi t di it
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considered vanishingly small (beware of the number of significant digits 
the computer is capable of handling).



Check the Validity of the Results IICheck the Validity of the Results II
(iii) A valid root is not necessarily the desired root. For example, 

we provide a guessed value for the l=2 root and call 
MULLER to search around it for the correct =2 root. 
MULLER will return a different root (e g l=1 or 3) if theMULLER will return a different root (e.g. l=1 or 3) if the 
guessed value happens to be a better guess for that root. A 
reliable way to verify the l number of the root returned by y y y
MULLER is to count the number of peaks in the  versus z.

(i ) i h ll h h k h i ill h h(iv) Even with all these checks, there is still no guarantee that the 
results are free from numerical errors. We must also check 
whether the step size in the z integration is sufficiently fine towhether the step size in the z-integration is sufficiently fine to 
insure convergence of results. 
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Check the Validity of the Results III
Figures below show a typical convergence test The resonant frequency and quality factor QFigures below show a typical convergence test. The resonant frequency and quality factor Q
are plotted as functions of the total number of steps in the z-integration (named IZSTEP in
program CAVITY). Note that the positions of the junction points (z2, z3, and z4 in Fig. 1) and
hence the cavity dimensions as resolved on the uniformly spaced axial grid points for the z-hence the cavity dimensions, as resolved on the uniformly spaced axial grid points for the z
integration, are subject to an uncertainty in the magnitude of the step size. This is the
primary reason for the fluctuations of and Q with respect to IZSTEP in the approach to
convergence. The slow convergence shown in Fig. 4 is predominantly due to the uncertaintyconvergence. The slow convergence shown in Fig. 4 is predominantly due to the uncertainty
of resolving junction point z2 (where there is a discontinuity in wall radius) on the discrete
grid points. Generally speaking, the minimum IZSTEP required for good convergence
depends on the circuit geometry and the ratio of the total circuit length to the guidep g y g g
wavelength. Too large an IZSTEP can also bring in accumulation of round-off errors.
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Does the Numerical Results Make Sense?

Even computed correctly, numerical results can not be trusted
unless they make sense physically. We may start by asking some
universal questions: Is the energy conserved (see the slightly
positive slope of in Fig 3a)? Do the results reduce to well knownpositive slope of in Fig. 3a)? Do the results reduce to well known
limits [see Exercises (1) below]? Do they exhibit reasonable
parametric dependence [see Exercises (2)-(4)]? Do they conform top p [ ( ) ( )] y
known scaling laws [see Exercise (5)]? Obtaining answers to these
questions is a sure way to become familiar with the problem. We
are now ready to go deeper into the problem [see Exercises (6)-(11)]
and, for the best reward of all, let our imagination take us to the
unexplored territories of researchunexplored territories of research.

Always check carefully!
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y y

V. Discussion
 C b d h i d i f li ( h Computer programs based on the time domain formalism (such as program

CAVITY) are extremely effective in that they directly evaluate the resonant
frequency, Q, and field profile. They are essential tools for gyrotron designs.
Many runs can be rapidly made to achieve the desired resonant frequency and
Q, to optimize the field profile and maximize mode separation, etc. However,
because of its inability to scan the frequency, the time domain formalism doesy q y,
not present a complete physical picture of the open cavity. The low Q nature
of the open cavity brings about some issues that can only be clarified with a
spectral domain analysis [see Exercises (8)-(11) and Appendix F]spectral domain analysis [see Exercises (8) (11) and Appendix F].

 Resonances of the type taking place in an open cavity are common in
microwave circuits which often contain slightly mismatched junctionsmicrowave circuits which often contain slightly mismatched junctions
between various circuit elements. Single path reflection from one mismatched
junction results in a standing wave pattern (measured by VSWR). Multiple

fl ti b t t i t h d j ti lt i h likreflections between two mismatched junctions result in resonances, much like
those of the open cavity. Thus, a circuit with multiple mismatched junctions
behaves like coupled open cavities. The resulting circuit resonances are seen
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on an oscilloscope as multiple spikes superimposed on a swept frequency
signal.



Exercise (1)
1. For the open cavity of Fig. 1 with dimensions given in Table I, 

the resonant frequency of the TE111 mode is 9.839 GHz (see Fig. 
4) For an enclosed cylindrical cavity with the same radius (0 94). For an enclosed cylindrical cavity with the same radius (0.9 
cm) and length (11.7 cm) as those of the main body of the open 
cavity, the resonant frequency of the TE111 mode is 9.851 GHz. y, q y 111
Explain the difference qualitatively. 

Sol: Because of the fringe field, the open cavity has an effective 
length longer than L, hence the resonant frequency (of the    >0 
modes) is lower than that of an enclosed cavity of length L It is


modes) is lower than that of an enclosed cavity of length L. It is 
worth noting that for the   =0 (TM) modes of an enclosed cavity 
for which the axial field profile is uniform, an opening at either 


p , p g

end will impose an axial mode structure and therefore increase 
the resonant frequency.
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Exercise (2)
2 Use program CAVITY to show how the quality factor Q of a2. Use program CAVITY to show how the quality factor Q of a 

given mode varies with the output taper angle  of the open 
cavity (keeping other parameters fixed). Interpret the results y ( p g p ) p
qualitatively. 

S l L θ l i fl i f h d dSol: Larger θ results in more reflection from the open end, and 
hence lower diffraction loss and higher Q.
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Exercise (3)( )
3. For the cavity dimensions provided in Table I, the quality 

factors of the first three  modes (  =1, 2, 3) are, respectively, 
439, 116, and 56 (see output data in Appendix A). Give two 
reasons to explain the rapid drop of Q with the axial mode 
numbernumber .

Sol: Higher l number modes have higher resonant frequencies g g q
which result in (i) less reflection from the open end and (ii) 
higher group velocity of the wave. Both effects lead to greater 
diffraction loss through the open end and hence the decrease in 
Q values
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Exercise (4)
4 U CAVITY t h h th lit f t f4. Use program CAVITY to show how the quality factor of a 

given mode varies with the cavity length L (keeping other 
parameters fixed) Give three reasons to explain the rapidparameters fixed). Give three reasons to explain the rapid 
increase of Q with L. 

Sol: A shorter cavity stores less field energy which further reduces 
the Q value. 
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Exercise (5)
5. With reference to Fig. 1, assume that a traveling wave propagating to the left

is totally reflected at z=z2 and a traveling wave propagating to the right is
partially reflected at z=z3 with reflection coefficient . Show by the multiple
reflection approach (see R.E. Collin, II Foundations for Microwave
Engineering", 1st edition, pp. 340-343 and Eq. (49) in Ref.10 of Appendix F)
that the diffraction Q is approximately given by

1/2 4 L

where λ is the free space wavelength of the resonant mode Compare this

24 ( )
1

LQ 





  
where λ is the free space wavelength of the resonant mode. Compare this
relation with the scaling of Q with respect to θ, l, and L as considered in
Exercises (2)-(4). Note that depends on the taper angle and resonant
freq enc and that is a f nction of and L If all losses are incl ded shofrequency and that is a function of and L. If wall losses are included, show
that the combined diffractive/ Ohmic Q is given by the above equation with
 replaced by exp(－2kzL), where is the attenuation constant which can be

l d f ( ) f dievaluated from Eq. (10) of Appendix E.
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Exercise (6) and (7)
6. Assume that the output waveguide section of the open cavity p g p y

(see Fig. 1, z  z4) is terminated in a slightly mismatched load. 
Explain qualitatively how the load will affect the resonant 
frequency and Q of the cavity. 

7. Use program CAVITY to verify 
your answer to Exercise (6) by 
adding a smooth bump on the 

ll f th t t id twall of the output waveguide to 
simulate the effects of the 
mismatched load.mismatched load. 
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Exercise (8)
8 The lack of a sharp boundary at the output end of the open8. The lack of a sharp boundary at the output end of the open 

cavity is expected to result in a frequency sensitive field profile 
for a resonant mode, as shown in Fig. 6 of Appendix F. How 
would the frequency dependent field profile affect the spectral 
shape of a resonant mode, measured at a fixed position in the 

it i t t f i id t fcavity, in response to a swept frequency source incident from 
the output waveguide into the cavity? 
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Exercise (9)
9 In Exercise (8) if the fixed position spectrum is measured at9. In Exercise (8), if the fixed-position spectrum is measured at 

different points along the length of the cavity, will the spectral 
shape of a given mode be different from point to point? Does p g p p
this imply that probes located at different axial positions in the 
cavity will measure different resonant frequencies and Q's for 
the same mode? 
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Exercise (10)

10. Write a computer program based on the spectral domain formalism in Sec. II of 
Appendix F to: 
• verify your answers to Exercises (8) and (9) 
• calculate the reflection coefficient  assumed in Exercise (5) as a function of 

the wave frequency. q y
• calculate the reflection coefficient at the smooth bump assumed in Exercise 

(7) as a function of the wave frequency. 

Sol: RFS or RFS2
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Exercise (11)
11 Program CAVITY calculates Q by its time domain definition (denoted by11. Program CAVITY calculates Q by its time domain definition (denoted by 

superscript “t”)                     

While the spectral domain formalism yields Q by its spectral domain definition

(t)
2

r

i
Q 




While the spectral domain formalism yields Q by its spectral domain definition 
(denoted by superscript “ω”)

h Δ i th FWHM b d idth C i l d ith

( )Q  





where Δ ω is the FWHM bandwidth. Compare numerical runs made with 
program CAVITY with those made with the program developed in Exercise (10) 
to show that, for the same mode of a low Q open cavity, the two definitions of Q
do not yield the same result and                        

Explain this result qualitatively. 

( ) ( )tQ Q 

p q y
( )2( , ) ( )
j

j t
j

i t t
Q

j
j

f t f e


 

x x

( )0

2 *

1 1( , ) ( , ) ( )
22 2

1 1

i t
j t

j j j j

if f t e dt f
i Q

i i


   


 

 





 

x x x
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2 *
( ) ( )

( ) ( )

1 1( , ) ( ) ( )
2 22 2

...      Q

j jt t
j jj j j j j j

t

i if f f
i Q i Q

Q 


      


   

  

 x x x

Appendix: Muller’s Method

Note: Muller’s method is discussed in 
Conte and de boor, Elementary Numerical 
Analysis”, (3rd edition, Sec. 3.7).

59

y , ( , )

Appendix: Runge-Kutta’s Method (RKINT)
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Appendix: Dispersion Relation for a Lossy Waveguide
D i ti f th l f t i E (19) f A di FDerivation of the loss factor in Eq. (19) of Appendix F.

Jackson, Chap. 8

2 2
2 2 2 2 1 (1 ) 1 0c mk c i    

  
        2 2 21 (1 ) 1 0z cmn

w mn mn
k c i

r x m
 


        
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Spectral-Domain Analysis of Open Cavities
Part III

Reason: Cold tests of open cavities almost always employ the 

method of frequency sweeping and Q is measured by its spectral 

domain definition (hence denoted by superscript ω) where Δω is the ( y p p )

full width between the half maxima of the resonant line.

Q lit f t f th itQuality factor of the cavity:
       Time-domain definition:

fi ld( ) field energy                          
power loss 2

t r
r

i
Q 


 

( ) 0

       Frequency-domain definition:

Q  
 What is the difference 
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                          Q
 between these two definitions?

II. Numerical Approaches for the Spectral Model
3 assumptions:
• The waveguide radius changes slowly and there is no mode 

conversion. 
• A resonant mode is initially present in the cavity. All fields vary 

with time as exp( iωt)with time as exp(-iωt). 
• The end sections are uniform to ensure the correctness of 

calculation.

Time-domain model:
(where < 0 )i      (where  < 0.)r i ii    

Frequency-domain model:
?
C l fl ti ffi i t
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Complex reflection coefficient
Γ

Numerical Model

1 1 1 1( ) ( )
1( ) z zik z z ik z zf z e e  

 With a proper guess of the value of Γ (Γ = Γr +i Γi).

1 1 1 1

1
( ) ( )

1

( )

( ) ( )z zik z z ik z z
z

f z e e

f z ik e e
  


  
where r cmn 

 f is given at z=z1 and f ′ is set accordingly.

 Integrate from z1 to z5 using Runge-Kutta method

 Check the boundary condition at z and using Muller’s method Check the boundary condition at z5 and using Muller s method 
to guess the next root of Γ.

 Iterative integration, each time with an improved guess for ω, 
will eventually converge to a correct solution for ω, and f(z) will 
satisf all the bo ndar conditions
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satisfy all the boundary conditions. 



Frequency Response

65

Numerical Results
Numerical results obtained under the temporal and spectral
models for the cavity dimensions in Table I with different output
t l θ TE l l t d f i th t ff f ftaper angles θ . TE11l were calculated. fc is the cutoff frequency of
the main body of the cavity.
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Frequency Tunable Terahertz Gyrotron 394 GHz
Example I

q y y
Using Open Cavity Structure

N l h i R fl t d t b k d ill tNovel mechanism: Reflected gyrotron backward-wave oscillator
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T. H. Chang*, T. Idehara, I. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency tunable gyrotron using 
backward-wave components”,  J. Appl. Phys. 105, 063304 (2009).

Frequency Tunable Terahertz Gyrotron 203 GHz
Example II

q y y
With Mode Selectivity

An on-going research with 
J F k i U iJapan Fukui Univ.

N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara
and I. Ogawa, “Theoretical investigation of a highg , g g
efficiency and broadband sub-terahertz gyrotron",
Appl. Phys. Lett. 96, 161501 (2010).
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