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1. Textbook: Dwight R. Nicholson,“Introduction to Plasma Theory”
Chapters 1, 2, 6, and 7 (supplemented by two Special Topics).

2. Principal Reference: Krall and Trivelpiece, “Principles of Plasma
h i ” O h b k ill b f d i h lPhysics”. Other books will be referenced in the lecture notes.

3. Conduct of Class: Physical concepts will be emphasized, while
algebraic details in the lecture notes will often be skipped.
Q ti d It i d th t t d t h tQuestions are encouraged. It is assumed that students have at
least gone through the algebra in the lecture notes before
attending classes (important!).

4 Grading Policy: Major: midterm and final; Minor: attendance4. Grading Policy: Major: midterm and final; Minor: attendance.
The overall score will be normalized to reflect an average
consistent with other courses. 1

5. Lecture Notes:

The first three chapters of the lecture notes follow Nicholson andp
the rest on selected topics, all starting from basic equations.

As in Nicholson, we adopt the Gaussian unit system. Appendix A
in Ch 1 discusses the conversion between Gaussian and SI systemsin Ch. 1 discusses the conversion between Gaussian and SI systems.

Equations numbered in the format of (1.1), (1.2)... refer to
Nicholson. Supplementary equations derived in lecture notes, which
will later be referenced are numbered (1) (2) [restarting from (1)will later be referenced, are numbered (1), (2)... [restarting from (1)
in each chapter.] Equations in Appendices A, B…of each chapter are
numbered (A.1), (A.2)…and (B.1), (B.2)…

Page n mbers cited in the te t (e g p 120) refer to NicholsonPage numbers cited in the text (e.g. p. 120) refer to Nicholson.
Section numbers (e.g. Sec. 1.1) refer to Nicholson. Main topics

within each section are highlighted by boldfaced characters. Some
d d i i li i d h f i T h i lwords are typed in italicized characters for attention. Technical terms

which are introduced for the first time are underlined.
2



Chapter 1: Introduction

1 1 Introduction
Loosely defined, a plasma is a gas of charged particles

(electrons and ions), whose behavior is dominated by electric and
ti f d it th ( ft id bl ) f t l

1.1 Introduction

magnetic forces despite the (often unavoidable) presence of neutral
particles. A more specific definition will be given later in this
chapter, following the development of some basic concepts.

    

     The plasma is often referred to as the fourth state of matter, as is
clear from the following phase-transition process:

The Fourth State of Matter :

          Solid  Liquid  Gas  Plasma (an i  
                                                      

onized gas)    

                   heat            heat         heat

B f i i d il li b l i i l i

  

    Before going into details, we outline below principal properties
of the plasma and the existence of plasma in nature and laboratories.

3

Properties of the Plasma: 
l i t ti (th h EM fi ld )

1.1 Introduction (continued)

long-range interaction (through EM fields) 
collective behavior (Debye shielding, waves, …)
self consistency (E, B ↔ J, ρ)

M lli di ib i
2mvnon-Maxwellian distribution 

free energy 
instability
l i l diff i (d lli i )

0[ ]
2

exp( )
mv

f n
kT



classical diffusion (due to collisions)
anomalous diffusion (due to instabilities)

Existence of the Plasma: 
gas discharges (spark gap, lightning, sprite, ....)
non-neutral plasmas (accelerators, microwave tubes,….)
controlled fusion (tokamak, laser fusion, ….)
space physics (ionosphere, solar plasma, ….)
astrophysics (stellar plasmas, radiative processes, …)

4



Although plasma physics is generally considered to be a branch     

1.1 Introduction (continued)

1/3
0 0

of classical physics, quantum effects will set in when inter particle 

distances ( 1/ , : plasma density) are smaller or compara nn ble 
to the de Broglie wavelength ( / ) of a thermal particle, i.e. whenh p

1/3
0

1

g g ( ) p ,

                                   

     For the plasmas of interest to most plasma physicists, quantum 

 h
pn

p

o t e p as as o te est to ost p as a p ys c sts, qua tu
effects are negligible.

5

1.2 Debye Shielding
     Consider an infinite, uniform plasma of equal electron and (singly-
h d) i d it T t t it t t h t th0charged) ion density . To test its property, we put a charge  at the 

origin. Then, at the eqilibrium state, the electrostati
Tn q

2

c potential  obeys

the Poisson equation:  4 4 ( ) 4 ( ),      (1.1)Te ie n n q


          r

where  ( ) is the electron (ion) density in the presence of . 

     To solve (1.1), we make two assumptions:  
     

Te in n q

Assumption (i): The electrons and ions are each in thermal equili-

0

p ( ) q
brium at temperatures  and , respectively, with densities given by:

                                         e

e
kT

e i

e

T T

n n e


                               (1.2)




more electrons
0          e

0

( )

                                                                        (1.3)

     (1.2) and (1.3) are well-known

i

e
kT

in n e


 

:  potential  
energy of electrons
e

  more ions ( . ) a d ( .3) a e we ow
statistical relations. They will later
be derived in this chapter [see (17).]

:  potential     
energy of ions
e

6



     Assumption (ii) : 1 and 1    
e i

e e
kT kT
  

1.2 Debye Shielding (continued)

0 0

Nicholson uses the notation 
(1 )  for both temperature and 

     Then,    
ki ti H

e

e
kT

e
e

e i

e

kT kT

e
kTn n e n T










  



 
 
 

0 0

,
kinetic energy. Here, we 

(1 ) denote
ikT

i
i

e
kTn n e n





   


2

 the latter by . 

and 4 ( ) 4 ( ) [(1.1)] can be writtenTe i

kT

e n n q   

 
 
 

    r
2 2

0

2

1 1      4 ( ) 4 ( )                                     (1)

     As 0, (1) reduces to 4 ( ). H

T

T

i

e ikT kTn e q

r q

    

  

   

  

r

r ence*, , ( ) ( )Tq

0

,

                             lim ,                                                         (2)

     (2) is the Coulomb potential of . Physically, this is because T

r

Tq
r

q






 makes the dominant coTq ntribution to  as 0.

*See Eq. (B.10) in Appendix B.

r 

7

2 2 2 1 11

     For  > 0 , (1) reduces to  
dd

r


1.2 Debye Shielding (continued)

2 2
0

2
2

1 1 1        ( ) 4 ( )                            (1.3)

     Defining the electron Debye length , ion Debye length , 

and plasma Debye lengt
D De i

e ikT kT
dd

dr drr
r n e  

 

   

h asand plasma Debye lengt

0 0
2 3

, , ,

1 1 1

h  as 

    /(4 )  740 ( ) / ( )   cm      (1.4)

(1 5)

D

De i e i e ikT n e kT eV n cm



    
 

2 22

2

1 1 1

 1

   ,                                                                         (1.5)

we may write (1.3) as  
De DiD

d
r

   

2
2( ) ,                                   (1.6)
D

d
dr drr 

 

which has the solution:    

lim ( ) 0 0

D D

r r

e e
r rA B

r B

 





 

     

0

( )
     Boundary conditions  give 

lim ( )  [(2)]   T

r

r
Tq
rr A q








    
      
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     The solution of (1.1) is thus
r

1.2 Debye Shielding (continued)

                                                                            (1.8)

from which we obtain the only component of the electric field: 




 DT

r
q
r e

r

           E 2

shielding cloud

1 1( ) ,

the charge density:





   T

D

D

d
r rrdr q e

2
2

test charge

1
4            ( ) ,

4


  
 


   




T
D

DT

r
q

q e
r

r

and the total charge in a sphere of radius  (including test charge):

     T

r

Q 21
4( ) ( ) (1 )


 


     T

D

D
otal

r
rr d r E r q eE a

     We find ( ) 0 as . This shows that the total charge
in the shielding cloud is , which exactly cancels the test charge.

 
 T

D

TotalQ r r
q

9

2
     : Rewrite ( )

4T
DT

r
q

Discussion q e
 




 r

1.2 Debye Shielding (continued)

24
     1. When a test charge  is placed in a plasma, the plasma particles
form a charge cloud of the opposite sign (with total charge  and

f hi h

D

T

T

r
q

q

 


i di f ) hi ld Amost of which

1
in a radius of ) to shield . As  

a result,  due to  falls off as  when  

[(2)]. But as  increases,  falls off much faster 

D T

T D

q
q r

r
r


 






1than  due to the shielding 

cloud. This effect is called 
Debye

r

 shielding.y g

   Debye 
 shielding  10



    2. Through the shielding charge cloud, the plasma effectively 
neutralizes the test charge over a distance of approximately 

1.2 Debye Shielding (continued)

Dneutralizes the test charge over a distance of approximately . 
Hence, a plasme can be regarded as quasineutral ( ) if 

,  wheD

e in n

L






 re  is the dimension of the plasma.L

11

     3. Any plasma particle can be regarded as a test charge and is 

1.2 Debye Shielding (continued)

2 2 2 2
, 1 1 1

y p p g g
therefore shielded by the other particles just as the test charge.

     4.    De i
e ikT

  
 

  2
0

2 2 2, 4

     Physical re

D
D DD i

e i
en e     

 

, , ,ason for :  When 0,  the neutralizing

particles after drawing to the shileding cloud have the mobility (due
De i e i e iT T  

particles, after drawing to the shileding cloud, have the mobility (due
to thermal velocities) to move out of the cloud, thus reducing their
shielding ability.

1

0

D

1
     Physical reason for :  The shielding ability of the plasma

increases with its density.

n
 

12



     5. In a plasma, we can have  for a limited time duration. 

As will be shown in Sec 1 6 [Eqs (36) (39)] this is because of the

e iT T

1.2 Debye Shielding (continued)

As will be shown in Sec. 1.6 [Eqs. (36)-(39)], this is because of the
difference in ralaxation time scales: .  As a result   ee ii ie ,

it takes a much longer time for  and  to equalize than for thee iT T

electrons and ions to thermalize.
     6. In the presence of a magnetic field , forces acting on charges
along  can be different from

B
B those acting perpendicular to .Thus,B  

even a single species (e.g. the electrons) can have two temperatures, 
 and T , before collisions equalize the two temperatures.

     7. Temperatures of laborato
 T

ry plasmas typically range from 1 eV p y p yp y g
to 10 keV (1 eV 11,600 K),  but with a density much lower than
that of the air (see table two pages back). Hence, the thermal energy 
per unit volume ( ) can be muc



nkT h lower than that of the ordinaryper unit volume ( ) can be mucnkT h lower than that of the ordinary 
matter. For example,  of a fluorescent light tube is 20,000 K,  
but the energy content just barely warms up the glass tube.

eT

13

8. In a neutral gas, particles interact with each other only when
they come into close contact. In the plasma, a charged particle

1.2 Debye Shielding (continued)

y p , g p
interact simultaneously with many particles through electromagnetic
forces. The short-range binary interactions still take place in a
plasma, but particle interactions are dominated by long range forces.p , p y g g
These forces are important because of the large number of particles
involved. A quantitative comparison between long- and short-range
interactions will be given in Sec. 1.6.te act o s w be g ve Sec. .6.

9. Long-range interactions can result in a variety of collective
behavior. Debye shielding is an example of such behavior, in which
many particles respond cooperatively to shield the electrostatic fieldmany particles respond cooperatively to shield the electrostatic field
of the test charge. Collective behavior is responsible for the richness
of plasma phenomena. For example, there are numerous types of
plasma waves but there is only one type of wave (the sound wave)plasma waves, but there is only one type of wave (the sound wave)
in a neutral gas. However, long-range interactions can also be
stochastic in nature, as in collisions discussed in Sec. 1.6. 14



D     Derivation of  (hence Debye shielding) has used the statistical 

1.3 Plasma Parameter

D

relations (1.2) and (1.3), which are valid only when there are 
particles in the shielding cloud of radius , i.e. 

many

3 1 (1 14)  n          0

D ,

                   1                                                 (1.14)

where  is called the plasma parameter.    

     Derivation of  has also assumed . We take  to be



  

 






D

e i

n

kT e

the averag
1/3
0

1/3

e potential at a particle due to its nearest neighbor located
a distance 1/  away:

Coulomb potential is appropriate to
(1 9) e

n

1/3
0

D

p pp p
                  (1.9)

use because particle distances .

     T

 
     

e
r en

1/3 2
0, ,hus,  implies                                 (1.12) e i e ikT e kT n e

2 3
D 0 0,     Using / (4 ),  (1.12) gives 1,  which is again

(1.14). Thus, (1.14) is the validity condition for the Debye 

   De ikT n e n

theory.
15

1.4 Plasma Frequency
     This section considers another familiar example of the collective 
b h i l ill ti W b i ith d l t f thbehavior : plasma oscillations. We begin with a development of the 
basic equations for a detailed treatment of this important problem.
     First, we will derive the fluid equation (7.5)
i S 7 1 b f ll i ll l f h h l i

Basic Equations : 
in Sec. 7.1 by following a small element of the -th plasma species,
which has a velocity ( , ) at position  and time . By 


 t tv x x Newton's 

law of  motion,  we write    ( , ) ( , ) ( , ),         (3)   d
dtn  t m  t  tx v x f x

where  is the particle density of  species ,  is the particle mass,
and  is the force per unit volume acting on th

 




dt

n m
f e fluid element. Note

that although ( , ) varies with , it is not to be differentiated withn  t txg ( , ) ,
repect to  because  acts on the mass per unit volume ( ).

     For the LHS, we have ( , )



  

 

d
tdt

t n m

 t

f

v x v ( )  d
dt
d

x v              

     Since  is the position of the fluid element,  is the velocity

of the fluid element. Thus, ( , ) ( ) .          (4)   

  

d
dt

d
tdt  t

x x

v x v v v
16



     Rewrite (3) :   ( , ) ( , ) ( , ),                           (3)

O h RHS id l h L f d i d h

   d
dtn  t m  t  tx v x f x

1.4 Plasma Frequency (continued)

1
 

     On the RHS, we consider only the Lorentz force density and the 

pressure force density :     ( , ) [ ]     c t n qf x E v B ,      (5)

where is charge per particle. Note that the fluid pressure " " has
P

q P
2

where  is charge per particle. Note that the fluid pressure  has 

the unit of force/cm ,  while pressure force density "  " (force  

per unit volume due to ) has the unit of force

 







q P

P

P 3/cm .

P P

P

P

     Sub. the expressions for ( , ) [(4)] and ( , ) [(5)] into (3),  
d
dt  t  tv x f x

P

1
we obtain the fluid equation for species  [same as (7.5)] :

        [ ( ) ] ( )          (6        



      

dt

t cn m n q Pv v v E v B ) 17

1.4 Plasma Frequency (continued)

     : In writing the pressure force density as " ",  
we have assumed an isotropic velocity distribution for the particles

Discussion P
we have assumed an isotropic velocity distribution for the particles. 
This has considerably simplified our derivation of the fluid equation. 
A rigorous derivation can be found in Nicholson Sec. 7.2, which 
also leads to (7 5) but with a specific expression for :Palso leads to (7.5), but with a specific expression for :   

                                                           


  

P

P n kT                          (7)

     Next, we note that conservation of particles requires (see figure)

3 3 3        ( ) 0 ( )

( ) 0

     






     

  

   v v v v
d

tdt n d n d n d n d

n n

x x xv a v

v (8)divergence thm.

       

da
sn

s sn v
      ( ) 0,                       t n n v                                   (8)

which is the equation of continuity.

g

   

arbitrary volume v

da

18



1
     Rewrite the fluid equation:

[ ( ) ] ( ) (6)     PE B

1.4 Plasma Frequency (continued)

1
          [ ( ) ] ( )           (6)

and the continuity equation: 

( ) 0

        

  







     

 

t cn m n q P

n n

v v v E v B

v (8)        ( ) 0                                                        t n n v            (8)

     Finally, the EM fields are governed by the Maxwell equations:

4                                                                      n qE


0                                
      


  B

1
 

41

                                                 
 (9                                                                     






  



tcE B )

41
                                       


 




  


tc c nB E v

     (6), (8), and (9) form a set of coupled, self-consistent equations,
i th fl id ti i d t i d b d i ti (6) [ 1 2 ]

   

a r b i t r a r y  v o l u m e  v

      

d a
sn

s sn v

i.e. the fluid motion is determined by dynamic equations (6) [ 1,2,..]
through  and , while  and  are determined by field e

 
E B E B quations (9)

through the fluid motion (which produces  and . J) 19

1.4 Plasma Frequency (continued)

     

Assume that the plasma is formed of two fluids (electrons and

Plasma Oscillations :

     Assume that the plasma is formed of two fluids (electrons and
singly-charged ions), each obeying (6) and (8), and contributing to 
(9). Then, the complete set of equations 

1

are

 1
 

1
 

[ ( ) ] ( )            (10a)

[ ( ) ] ( )                  (10b)






      

     

e e e e e e e e

i i i i i i i i

t

t

c

c

n m n e P

n m n e P

v v v E v B

v v v E v B






4 ( )                                                              

    

   i ee n nE

1

 (10c)

0                                                                                (10d)

(10e)
  

  

B

E B






  

41
  

                                                                  (10e)

(





 

    e

t

t

c
e

c c n

E B

B E )                                    (10f)

( ) 0 (10g)



 

e i in

n n

v v

v




 ( ) 0                                                             (10g)

( ) 0                                                    





  

  

e e e

i i i

t

t

n n

n n

v

v            (10h)




 20



     Although the oscillation behavior involves plasma currents, we 
start out with the assumption:

1.4 Plasma Frequency (continued)

start out with the assumption:

                             0                                                                 (11a)B

     From (10e) and (10f), this is equivalent to assuming

0  [The oscillation is an electrostatic phenomenon]  (11b)
    displacement current

4 ( ) 0          
particle current 0




 
        e e i it e n n

E

E v v   (11c)




 p 

which need to be justified later on the basis of the results obtained.
     We further make the simplifying assumption: 

0



 T T (11d)                            0                                  e iT T                        (11d)

which, by (7), implies that the plasma is "cold" and hence 0. e iP P

21

    Under approximations (11a)-(11d), Eqs. (10a)-(10h) reduce to


1.4 Plasma Frequency (continued)

( )                                                  (12a)

( )                                    






   

  

e e e

i i i

e

i

e
m

e
m

t

t

v v v E

v v v E                    (12b)






      4 ( )                                                            (12c)

( ) 0                                                          (12d)






   

 
ei

e e et

e n n

n n

E

v





 ( ) 0
   i i it n n v                                                             (12e)

     As a simple but important first step, we find the solutions for the

equilibrium state ( 0) The equilibrium solution




 s are obviouslyequilibrium state ( 0). The equilibrium solution t

0 0 0

0 0 0

s are obviously

0
      

 (  infinite and uniform plasma)

  
    

e i

e in n n const

v v E

where the equilibrium solutions are treated as zero-order quantities
and denoted by subscript "0".



22



     Next, assume that the equilibrium state is slightly perturbed, and
denote the perturbations by subscript "1" as first-order quantities

1.4 Plasma Frequency (continued)

0

denote the perturbations by subscript 1  as first order quantities.

e ev v

0

1


e

i i

+ v
v v 1i+ v

(13)




          0

0

0

1

1

 
 


e e

i i

n n n
n n n

E E 1

                                                                 (13)

  





 + E1

11

     Sub (13) into (12) and keep only first order terms,

                                      




 e e
e

mt v E                         (14a)
 1 1( )  ande ev v

          

1

1

1

1 1

                                                                  (14b)

4 ( )                                                      (14c)








   
i

i e

i
e

mt
e n n

v E

E







1 1( )  are
2nd order terms

i iv v

01

  et n n

0

1

1 1

0                                                         (14d)

0                                                          (14e)


  
    

e

i it n n

v

v
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     The steps from (12) to (14) are called the linearization procedure. 
As a result, (12a)-(12e) reduce to a set of linear differential equations 

1.4 Plasma Frequency (continued)

s a esu t, ( a) ( e) educe to a set o ea d e e t a equat o s
[(14)], which can be readily solved. However, the sol

0 01 1

utions are valid 
only when the perturbations are sufficiently small ( ,  ,

) so that higher order perturbations can be neglected Consider a

 


e in n n n

11

) so that higher order perturbations can be neglected. Consider a 
normal mode by letting   

( , ) 



k
i

ee  t v ev x                                                 (15a)  z
z

t ik ze


   Subscripts " " and " "
denote particle species.

S b i t "0" d t

e i

       
1

1

1

1

( , )                                                   (15b)

( , )                                 





 

 



z

z

z

k

k

i

e

i t ik z
i

i t ik z
e

 t v e

n  t n e

v x e

x                      (15c)






 i t ik

   Subscript "0" denotes
zero-order quantities. 
   Subscript "1" denotes
first order quantities

1

1 1

1( , )                                                      (15d)

( , )                                                    (15e)

whe





 

 

 
  z

z

z

k

k

i
i t ik z

i
i t ik z

n  t n e

 t E e

x

E x e

re the normal mode is independent of andx y v v n

first-order quantities. 
   Subscript " " denotes
a normal mode.

k

whe 1 1 1

1 1

re the normal mode is independent of  and ,  , , 

,  are the (constant) amplitudes of the respective variables.

It is understood that the LHS is given by the real part of the RHS.

k k k

k k

e i e

i

x, y, v v n

n E
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     Sub. (15) into (14), we obtain a set of linear algebraic equations: 

(16 )ei E

1.4 Plasma Frequency (continued)

1 1

1 1

                                                             (16a)

                        

        

e k k

i k k

e

i

e
m

e
m

i v E

i v E





  

 

1 1 1

                                         (16b)

4 ( ) (16c)k i k kik E e n n 






0

1 1 1

1 1

4 ( )                                                   (16c)

0                                                       (1z

z k i k e k

e k e k

ik E e n n

i n ik n v


  

01 1

6d)

0                                                        (16e)zi k i ki n ik n v




  

1 1 1 1

1

1 1

     From (16a,b) and (16d,e), we obtain , , , and  in 

terms of :
e k i k e k i k

k

k k
e

v v n n

E

v i E  (17a) 1 1

         

e k kemv i E

0
2

1 1

1 1

                                                           (17a)

                                                                 (17b)i k k

k k
z

i
e
m

n ek
m

v i E

n i E



 
 

(17c)





 21 1                                 e k kemn i E

0
21 1

                          (17c)

                                                            (17d)i k k
z

i

n ek
mn i E


  25

0 0
2 21 1 1 1    Sub.  [(17c)] and   [(17d)]   e k k i k k
z z

e i

n e n ek k
m mn i E n i E
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0 0
2 2

2

1 1 1

1 1

into 4 ( ) [(16c)], we obtain 

                             4 ( ) ,





 

 

z

z

k i k e k

k k
z

e i

n e n ek
m m

ik E e n n

ik E i E

which can be written   

4
0

0

2 2 2
1

3
24  rad

sec

( ) 0                          (18)

 [ 5.64 10 (cm )  ]


  

 

  


  

pe pi k

pe e
n e

m

E

n

0
24

 sec
where             

 [ ]

(18) h i i l l i ( 0)

  



  



p

pi pe pe

e

e
i i

n e m
m m

l h1    For (18) to have a non-trivial solution ( 0),   ckE
2 2 2 2

2 2 2

an only have

a single frequency given by                         (19)

where (20)

   

  

  

 
pe pi p

iwhere                                                                  (20)

      is called the plasm

  


 p pe pi

p a frequency. It is a characteristic frequency
of the plasma most frequently encountered in plasma studies. 26



     To summarize, the solution of this problem is in (15) with the
amplitude constants given by (17) and given by (19) As a final

1.4 Plasma Frequency (continued)

amplitude constants given by (17) and  given by (19). As a final
step, we need to justify the assumption 0 made in (11a), which 

req


B

0                                                                (11b)
uires 

 


E
req

1

uires 
4 ( ) 0                                  (11c)

0                      
or, upon linearization,  




    
 

e e i it e n nE v v

E                  (21a)

4 ( ) 0 (21b)

   n eE v v0 1 1

1 1

1 1

1 4 ( ) 0          (21b)

From (15a b e) and (17a b) we have





 


    

   

z
z

e i

k
i t ik z

e

t n e

E e

i

E v v

E e

v E1 1

1 1

     From (15a,b,e) and (17a,b), we have

     (21a) is clearly satisfied. The LHS of (






 

e

i

e

i

m
e
m

i

i

v E

v E

21b) gives by (17)( ) y (
2 2 2 2 2

1 1 1
1 1

) g

        ( ) ( ) 0  

Hence, (21b) is also satisfied. 
             pe pi pe pii i iE E E
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Discussion

1.4 Plasma Frequency (continued)

     1. In (15), we have assumed a wave solution (i.e. all quantities are

). But (19) shows that the frequeny  is fixed at a constant
value  independent of the wave number 

z

p

i t ik ze  


 
. As a result, the wave zk

0 1 11

does not propagate (group velocity / 0). Thus, what we 
have is an oscillation phenomenon rather than a wave phenomenon.

Rewrite (21b): 4 ( ) 0. Th

g z

i

v d dk

n e






 

   E v v is equation shows0 1 11     Rewrite (21b): 4 ( ) 0. The it n e  E v v is equation shows

an exact cancellation of the plasma and displacement currents. Thus,
no magnetic field is generated; the oscillation is electrostatic in nature.

H if th l h fi it t t ( d/ 0)P P      However, if the plasma has a finite temperature (  and/or 0),
thermal velocities will allow the charges to carry any disturbance
away from the source. In this case,  will be a function of  (hence 

) d l ill i

e i

z

P P

k



i l hi ill0) and plasma oscillations turngv  s into a plasma wave. This will 

be treated in Chapter 6.
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1.4 Plasma Frequency (continued)

     2. Since , we have from (19) ,  which implies   pe pi pe

that plasma oscillations are basically an electron effect. Physically,
this is because the wave field varies so rapidly that the much heavier
ions can not respond fast enough to play a significant role. Hence, as 

1

1

a good approximation, we may let ,  Then, from (16b), 0,
and from (16e), 0,  i.e. the ions are essentially stationary. 

 


i i

i

m v
n Thus, 

we may simply treat the ions as a uniform, neutralizing backgroundwe may simply treat the ions as a uniform, neutralizing background 
with zero density and velocity perturbations and neglect the ion 
dynamic equation [(10b,h)] in the analysis of plasma oscillations, as 
is done in Nicholson Sec 7 2 This approximation will lead to a

1/ 2

is done in Nicholson Sec. 7.2. This approximation will lead to a 
plasma frequency of . Comparing it with the exact value in

(20), (1 / ) , we find the error to be of the order 

 
 



 
p pe

p pe e im m

of / .e im m

29

     3. In Section 1.2, we have shown that the  field of a 
h i l li d i hi di b f D b

electrostatic

1.4 Plasma Frequency (continued)

Dtest charge is localized within a distance  because of Debye 
shielding. Here, we find that a  electric field can e


time - varying

D D

xtend 
well beyond  (i.e. we can have 1). The difference can be   k
attributed to the "inertia effect" associated with the dynamic behavior
of the plasma.

     Consider Eq. (10a) without the nonlinear term ( )  and the e ev vq ( ) ( )
magnetic force / c

                                                           (22)




  

e e

e e e e et

,

n m n e P

v B

v E

     The LHS is the inertia term due to the finite electron mass, the

importance of which depends upon the rate of change of : .

F h i ( 0) h l i i ( ) l l





e etv v

     For the static case ( 0),  the electron inertia ( ) plays no role

and we have


  et m

30



                                 0                                          (23)

Physically (23) states that the electric force are balanced by the

  e en e PE

1.4 Plasma Frequency (continued)

     Physically, (23) states that the electric force are balanced by the
pressure force, as is required for the

( )

 static state. The solution of (23)
is [write ( ) and assume ( ) ]


 e e e

e

P n kT
x

E = x x

0

0

( )

                                    ( )                                         (24)

where  and  are const

 


e

e

e

e
kTn n e

n T

x

x

ants. (24) was used in our earlier derivation

Dof  [see (1.2)]. 

     To consider the dynamic case ( 0),  we rewrite (22): 










t

PE                             ,  

which shows that, dependin


   e e e e etn m n e Pv E

g on its relative magnitude with respect
to the other terms, the LHS may modify the static results (e.g. Debye 
shielding) only slightily (e.g. the case of a moving test charge, see 
Nicholson, p.3) or in a fundamental way (e.g. plasma oscillations).

31

     4. The effect of electron inertia is best illustrated by the example 
of plasma oscillations The solid curve in the figure below shows the

1.4 Plasma Frequency (continued)

of plasma oscillations. The solid curve in the figure below shows the 
perturbed electron density at 0. In order to restore nt 

1

eutrality, the 
excess electrons in regions with 0 will be pushed by the electric 
fi ld i t i ith 0 I d i th l t ill bt i

en 

1field into regions with 0. In doing so, the electrons will obtain
maximum velocities at the state of complete ne

en 
utrality (field energy

becoming kinetic energy). The momentum will then carry the motion
further (an inertia effect). As a result, half a plasma period later,  the 
electron density turns nonuniform again in the opposite way (dashed 
curve). The reverse process then starts to complete the second half of

0t 1en
2

2 ( ) p
p

p
t

 
 

the oscillation cycle.

z
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     5. The analysis of plasma oscillations here is a typical example
of fluid treatment of plasma modes In Ch 7 of Nicholson a variety

1.4 Plasma Frequency (continued)

of fluid treatment of plasma modes. In Ch. 7 of Nicholson, a variety
of plasma modes are derived with fluid equations. As we will show
in Ch. 6, the same phenomena can be analyzed on the basis of a
( i ) ki ti ti ll d th Vl ti S th(more rigorous) kinetic equation called the Vlasov equation. So the 
plan of this course is to incorporate most of the materials in Ch. 7 
of Nicholson into Ch. 6 of lecture notes for a kinetic treatment. 
Ch. 7 will be referenced in (but not part of) the lecture notes.
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    The plasma is often immersed in an external magnetic field. 
Hence cyclotron motion of charged particles can influence plasma

1.5 Other Parameters

Hence, cyclotron motion of charged particles can influence plasma
behavior. Consider the equation of motion of a single particle of
mass 0 0 and charge  in a uniform magnetic field , z

q
m q BB e

 
y

t

ion
radius 0B

0 0 0

0                                                                         (1.24)

( 0) ( ,  ,  )
with initial conditions: 

( 0) (0

 

 

 



z
q
cm B

t x y z

t

r r e

r

r )



 v v    

   
0 0,x y

center of
rotation

x

        ( 0) (0,   tr

0

,  )
     The solutions are:  

( ) (1 cos ) sin








       

z

x

v

v

v v

x t x t v v t

0

0

 ( ) sin & cos                        (1.25)

.( )

called gyrofrequency




      
    

y

zz

v

qB

y t y t v v t

v constz t z v t

or 0
 

called gyrofrequency 
where           

qB
mc

or
                    (1.26)

cyclotron frequency

and  carries the sign of the charge.

 
 
 

q 34



    The center of the gyrational motion
is called the guiding center The radius

1.5 Other Parameters (continued)

y ionis called the guiding center. The radius

of gyration is called the Larmor radius
or gyroradius given by    

y

t
Lr

0 0, Lx r y

0B

guiding
center

                                                    L
v

r 


                                     (1.28) 

    : Since there is no electric field in (1.24), theRelativistic correction

   
0 0,x y

0 0,   Lx r y

x

( )
particle energy does not change and its relativistic factor:

              (1  
2 2

2 2

1
2)  zv v

c c
 


0

is a constant. For the relativistic correction, we simply replace  with
relativistic cyclotron

 in all equations. Thus,       (25)
frequency

qB
mc

c c
m

m       

0
 

frequency

     For an electron, 

mc

eB





  

  7 0(Gauss)
 

 rad
 sec1.76 10   

e

B
m c  
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Coulomb collisions Billiard ball collisions

1.6 Collisions

Coulomb collisions Billiard ball collisions

,q m m

,q m 0 0,q m  0m 
m

Properties of Coulomb Collisions in a Plasma :   

1. Each particle sees the electric field of all the particles within the
    Debye sphere of this particle, i.e. it is undergoing approximately 

Properties of Coulomb Collisions in a Plasma :

    si multaneous Coulomb collisions.
2. Most of the Coulomb collisions are small-angle collisions (i.e.
    collisions of small deflection angles). However, the cumulative 
   effect of many small-angle collisions is greater than that of 

    large-angle collisions, as will be shown in this section.
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1.6 Collisions (continued)

      
       

       
       

    


( )tr

0

,  q m
0v

0v zv

p  impact
parameter
 
 
  0

unperturbed
orbit,   z v t

( )t 0z 

0 0,  q m  
  ze

parameter  0,

       Small - Angle Collisions :

0

0 0

     As shown in the figure above, an incident particle with charge 
and mass  is colliding with (or scattered by) a particle of charge  
and mass . Assume , so t

q
m q
m m 

g

he scatterer remains stationary.0 0and mass . Assume , so tm m  he scatterer remains stationary. 
Define the impact parameter  to be the perpendicular distance from
the scatterer to the unperturbed orbit (  to the -axis) of the incident 
particle The actual orbit

p
z

of the incident particle is ( ) which makestrparticle. The actual orbit of the incident particle is ( ), which makes 
an angle ( ) with the negative -axis. Although the figure shows a 
repulsive collision, the treantment applies also to attractive collisions.

t
t z

r
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1.6 Collisions (continued)

       
       

      
       

    


( )tr

( )t 0z 

,  q m
0v zv

p  impact
parameter

 
 
  0

unperturbed
orbit,   z v t

( )t

0 0,  q m  
  ze

     Our primary interest is the scattering angle ,  defined to be the
angle betwen the initial ( ) and final ( ) velicities of thet t


  

0

angle betwen the initial ( ) and final ( ) velicities of the 
incident particle, i.e. the angle between  and ,  whz z z

t t
v v v 

  
e e e

0
2( )

ere 

 is given by   ( ) sin ( )                (26)
qq

r t
v mv F t dt t dt  

 

 
   ( )

     The scattering angle  can be evaluated exactly (see Appendix 
C). Here, we calculate it approximately for the case of 

r t


0

small-angle 
collisions ( 1). For 1, we have (or ), whichv v v v      0

0

collisions ( 1). For 1,  we have  (or ),  which

sin                                (27)
gives the approximate relations: 

cos                           (28)

z zv v v v

r p
r v t

 






  

  
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1.6 Collisions (continued)

      
       

       
       

    


( )tr

( )t 0z 

,  q m
0v zv

p  impact
parameter
 
 
  0

unperturbed
orbit,   z v t

( )t 0z

0 0,  q m  
  ze

 

0
2

3    Sub (27) into (26)  sin (1.32)                       
qq
mpv dt




  

0
0 2

0 0

cos
sin sin

2

    Divide (28) by (27)            (1.34)

Sub (1 34) into (1 32) sin

p pd
v

mp

qq qq

v t dt

v d

 
 

 



    

  



(1 35)


0 0

0 00
    Sub (1.34) into (1.32) sinmv p mv pv d   

 
0

0 0

0

2

     (1.35)

        or       [valid when ]                  (1.37)
p pv

v p p
qq qq

p p  




2
0 0

0

2
0

0 0

0

1
2

2
where  ( )                                             (1.36)

   is the distance of closes

qq qq
pmvp mv

p

  

t approach for a head-on collision ( 0).p  39

   Refer to the right figure The scattering
     Large - Angle Collisions :   

1.6 Collisions (continued)

  
  

,q m

0v p

0 0,q m  
  0

0
0
2
02 2

2

Refer to the right figure. The scattering  
angle is given by (derived in Appendix C) 

           tan     [ ]                                         
qqp

p mvp  

     

         (29)
0 0,q m 0p mv

0

0

     In the limit 0, we have ,  in agreement with (1.37).

     If ,  (29) gives 53 , which we define to be large-angle 
tt i Th th ti ( ) f l l

o

p
p

p p

 


 
 

tt i i

 ,q

0 0,  q m         

scattering. Then, the cross section ( ) for large-angle sL

0 0

0
2

cattering is
                                  

     For an electron moving with velocity  in a gas of ions ( ), 
L p

v m

 


0
0 0 0 0 0

2
2

the large-angle collision frequency ( ) is 

4
        L

L

L
n e

n v n v p


    

2
0 0
2 4

3 2 3 3
0

4 1
,  [ ]      (1.38) 

q n e

m v m v v


 

for singly-charged ions

0

0 0 0

where  is the ion density. Note that Nichoson uses the notation  for
collision freuencies. Here, we use  to avoid confusion with velocity .

em v m v v
n

v


 40



          
     : Let's first consider the problem of one-dimensionalRandom walk

Small - Angle Collision Frequency :
1.6 Collisions (continued)

p
random walk. A man starts out from 0 and and has walked  steps 
of equal length . The 

x N
 direction of each step ( or ) is completely 

d Th t t l di t f 0 i

 x x
Ntot 



 

e e

1
random. The total distance away from 0 is:       ,

where  (  or ) is the -th step length,  and  can be any
multiple of  betw

tot

i
tot

i

i

x x x

x i x

   

     
 een  and  for a single event. Statistically,N N  p

2

g y,
if there are an arbitrarily large number of similar random-walk events,
one can find the average of ,  ,  ( ) , etc. Such an average
is called

tot tot
ix x x  

the ensemble average and we denote it by . Evidently,is called the ensemble average and we denote it by . Evidently, 

0 (hence 0) because the -th steps in all events are

uncorrelated, and 0 if  because the -th and -th steps
f h

tot
i

i j

x x i

x x i j i j

   
   

l dof each event are u

1

2 2 2 2

1

0ncorrelated.

Thus, ( ) ( ) ( )   (30)tot
i i j

j

N N N

i
i i i

x x x x x N
  
          




2

       


41

2 2     Taking the square root of ( )  [(30)], we obtaintotx N  
1.6 Collisions (continued)

2                        ( ) ,                                              (31)

which shows that, in a great many random-walk events i

totx N  
n which a

man has randomly walked  steps of equal length , he will be at anN y p q g ,

average distance of  from where he started. So the more steps
he makes, the further away he will likely be from the startin

N
g point,

while the average distance will be proportional to rather thanN Nwhile the average distance will be proportional to  rather than .
The key word here is "average". The actual distance traveled differs
from event to event. It can be any multiple of  between 

N N

 0 and ,
ith th hi h t b bilit f 0 d th l t b bilit f

N
N

with the highest probability for 0 and the lowest probability for .

     The (3-dimensional) diffusion of a molecule in a gas is a typical

random-walk phenomenon. If the molecule moves a mean

N

 distance

2
 between collisions, it will be at an average distance of  from 

the starting point after  steps (  is the diffusion coefficient). 
N

N
 


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0

     : Return to the collision problem.
Suppose a test electron with velocity  is injected into an ion gas. z

Electron - ion collision frequency
v e

1.6 Collisions (continued)

0pp y j g
After  collisions, all with the same ,  the 

z

N small - angle p

1 1

2 2 2

total perturbed

velocities will be   ;   xi yi i

N N

i i

tot tot
x xi y yi v v vv v v v

 
              

0
2
0

2
     Assume  and the electron velocity  in all collisions.

Then, from (1.37), we have     
i z

i

m v

v v p

 
 

e
2 2
0 /  for all                  (32)

     This is a random-walk problem in the velocity space. If we repeat 
p i

p y p p
the injection for a large number of times, the ensemble averages are:

0,  for a
      xi yiv v    ll  

0

i

i j



   

2( ) is the same for all i

2 2 2

1 1

2

0,   

and ( ) ( ) ( ) ( )  

xi xj yi yj

N Ntot
x xi xi xi

i i

v v v v i j

v v v N v
 
 


      

      
2 2 2

( )  is the same for all . xiv i

2 2

2 2 2 2
2 2
0 0

2

     Similarly, ( ) ( ) . 

( ) ( ) ( ) ( )    (33)

tot
y yi

tot
xi yi i

v p
p

v N v

v N v N v N v N 

  

        

2 2 2
0 0 /  by (32)v p p

43

1.6 Collisions (continued)

2
2 2
0 0

2

where we have dropped the
superscript "tot" for brevity

     Rewrite (33) :  ( )   (33)
v p

pv N
     

0

superscript tot  for brevity.

     Assume that the electron (with initial velocity
v ) is injected along the -axis (see figurz

p

z

  

e e) into 

y

the ion gas. (33) gives the average perpendicular 
velocity obtained by the electron after  small- 
angle collisions with surrounding ions which are 

N      
p dpp

x
-axisz

located on a cylindrical shell of radius  (p

0

the impact parameter).

     If the ion density is , the rate of collisions made with ions located 
between  and  is  

d

n
p p dp

0 0                                       2                          dN
dt

p p p
n v pdp

2

            (34)

     Differentiating (33) with respect to , we obtain the rate of change of 
( ) due to collisions with ions located between and :

t
v p p dp 

2 3
0 0

2 2
0 0

2
 

 ( )  due to collisions with ions located between  and :

            ( ) 2
v pd dN

pdt dt

v p p dp

v n v p





 

   2
0                               (35)

dp
p 44



2 3 2
0 0 0

2 2
0 0

2
      Rewrite (35): ( ) 2               (35)

v p dpd dN
ppdt dtv n v p  

1.6 Collisions (continued)

 y
2

maxmin     Integrating (35) over  from  to ,  we obtain the rate of
change of ( )  due to collisions with ions located betw

p
p p p

v mineen  
and :

p
p

      
p dpp

x
minp maxp

max

min

2 3 2
0 0 0

max

         
and :

         ( ) 2                                 (1.45)

     Small-angle collisions are, by our 

p

p

dpd
pdt

p

v n v p  
p dpp

0

definition, for impact parameters of

,  so we set p p p 0min . Because of the Debye shielding effect,

the Coulomb field is negligible at So we set Then

p

p p 



2 3 2

0 0 0
0

max

 

the Coulomb field is negligible at . So we set . Then,

      ( ) 2 ln                                            (1.46)

D D

Dd
dt

p p

v n v p
p

 


 

 

     Th 0

0 maxmin

e log factor in (1.46), ln( / ),  is insensitive to the argument

/ . This justifies our rough choices of  and .
D

D

p

p p p




45

2 3 2
0 0 0

0

      Rewrite (1.46): ( ) 2 ln                (1.46)Dd
dt v n v p

p

 

1.6 Collisions (continued)

0

0 0

0

     For an estimate of ln( / ), which is insensitive to / ,

we let / electron thermal velocity (Nicholson
D D

Te e e

p

p p

v v kT m

 
  

2 2
denotes Tv 0 2

0

2 22 2 by ). This gives                      (36)

     Ignoring the difference between  and ,  we have from (1.4)D D

ee
e

e

e
e e

m v kT

k

v p

 

 

0
24

                              

Hence 2

D

D

e

e

kT
n e

kT
n




   



  32 2 (1 47)ekT
n    

(1.14)

0
0

22
Hence, 2D De

n
p

    0
0

0
0

2
0

2

22

2 2 ,      (1.47)
4

     In (1.46), setting  and  (neglect the factor 2 ),
e

D

D

e
m v

n
n e

p
p

  


 

  

  
0

2 0

0
2

48  we obtain        ( ) ln                             (1.48)
e

n ed
m vdt

p

v


  
46



0 2

     The collision time ( ) is roughly the time it takes for the particle

to be deflected by 90 . We define it to be the time for ( ) to
c

v





1.6 Collisions (continued)

2
0

to be deflected by 90 . We define it to be the time for ( )  to

increase to  according to the rate of change in (1

v

v initial 


2 0

0
2

48 

.48):

                           ( ) ln                                 (1.48)
e

n ed
m vdt v


  

0

2

0

0

2
0

2 3
0

4
 

8 ln

although  will have changed considerably during this time. Thus,

( )  or c c

e

e

m vdt

m vd
dt n e

v

v v       ,  which gives the small-angle
0

0
4

2 3
0

81collision frequency:       ln                              (1.49)

     In (1.49), the factor ln  is insensitive to . For most plasmas, 
cc

e

n e
m v
   

 
ln 10. Comparing 

4
0

0 0
2 3 3

  with the large-angle collision frequency 
4 1

in (1.38):  (note both  and  are ), we find

c

cL L
e

n e

m v v


   

0 0
                                        2 ln 1                                     

L

e
c

m v v
   (37)

i.e. small-angle collisions dominate over large-angle collisions. 47

0
4

2 3
8

Rewrite (1.49): ln (1.49)
n e  

1.6 Collisions (continued)

0

2 3
0

     Rewrite (1.49):        ln                                       (1.49)

      in (1.49) applies to  of velocity  colliding with
an ion gas. In a plasma, we have 

c

c

em v
a test electron v

an 







colliding with an electron gas

0

0
48

ion gas. We may estimate the electron-ion collision frequency ( ) in

the gas by letting /  . Thus,  

electron-ion( ) ln

Te

ei

e e
n e

v v kT m




 

 

 (38) 
0

0
3/21/2( )    ( ) ln   

coTeei c
e em kTv v    

2
0

2(4 )

    (38)
llision frequency

     To compare the relative magnitude of  and , we write

l l

ei pe

T Te ev vn e
 

 
  

  0
42

0 0

0 0
4 4

(4 )
2 2( )

4 4

ln ln

        
Ignore the difference

 

D
ei

pe

T T

T

D

e e
e

e e
e ee

n e
n nkT

vn e n e kT
m mkT


  
 







   

  
between and 



       De eekT 

0
3

ln ln 1
22

between  and 

Thus,          1                                 (1.51)

D D

D

e

ei
pe n

  

 
 



   
   
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3
ln ln 1

22
     Rewrite (1.51): 1                 (1.51)ei

pe n

  

 
   

1.6 Collisions (continued)

0

6

3 22
( ) ( )

     This shows that Coulomb collisions are not effective in damping

plasma oscillations or waves. For example, if 10 , the da

Dpe n   

 
6

mping
6time will be 10  oscillation periods. As will be considered in Ch.6,

a damping mechanism called Landau damping is much more effective.

     :Electron - electron collision frequency



     When an electron collides with another electron, the scatterer is 
no longer stationary. The collision frequency can be calculated in 
the same way by moving to the center-of-mass frame*. The result,y y g ,
within a factor 

0
3/ 2

4

1/ 2

8
( )

or 2, is the same as (38). So, we have

electron-electron         ln            (39)
collision frequencyee ei

e e

n e
m kT

        



( ) q y

*See L. Spitzer, Jr., "Physics of Ionized Gases," 2nd ed., Ch. 5.

e e   

49

0
48
:

i (39) l (39)
n e

     Ion - ion collision frequency
 

1.6 Collisions (continued)

0
3/ 21/ 2

8
( )Rewrite (39) : ln                                       (39)

     The ion-ion collision frequency can be obtained from (39) by 
replacing w

ee

e

e e

n e
m kT     

m

  

ith and with . Thus,i e im T Treplacing  wem

0
3/ 2

4

1/ 2

8
( )

ith  and  with . Thus, 
ion-ion collision                  ln                  (40)
frequency

Comparing (38)-(40) we find for is smaller by the

i e i

ii
i i

n e
m kT

m T T

T T





     
     Comparing (38)-(40), we find, for ,  is smaller by the

factor 

e i iiT T 

 i.e              (or )                     (41)

:

ii ei ee
e e e
i i i

m m m
m m m

Ion electron collision frequency

  

     :
     Scattering of ions by electrons ( ) is like scattering of billiard 
balls by ping-pong

ie

Ion - electron collision frequency


 balls. A similar calculation in the center-of-mass 

frame shows the  is another factor of /  smaller, so that 

                               (or )                              

ie e i

ie ei ee
e e
i i

m m
m m

m m

     (42)
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     When a plasma is first formed (e.g. by an
electrical discharge) a charged - particle species may be in directed

Relaxation Times : 
1.6 Collisions (continued)

electrical discharge), a charged particle species may be in directed
motion. The directed velocity will then randomize on the time scale
o

1

f one collision. Thus, from (38) and (39), we obtain 

El t th li th ti l f (43) 1

1

Electrons thermalize on the time scale of .              (43) 
     

Ions thermalize on the time scale of  ( ).  (44)

ee ee

ii ii ee
i
e

m
m

 

  





 



I dditi l t d i i t b l h  

1

  In addition, electron and ion energies may not be equal when a
plasma is first formed. The energies will equalize via ion-electron 

collisions on the time scale of                           ie ie                  (45)

to reach the final state of equipartition of energy (  ).

     Comparing (45) with (43) and (44), we find  is greater than ie

e i

m m

kT kT




 and  by the factors:    ;  ee ie ie ee ie
i
e

m m
m      ,              (46)

which explains why we can have for a limited time. 

ii

e i

i
em

T T



 51

3/2

     : 

1 All the Coulomb collision frequencies have the 1/ 
Discussion

T

1.6 Collisions (continued)

     1. All the Coulomb collision frequencies have the 1/
dependence,  i.e. less collisions at higher temperatures. Physically, 
this is because thermal velocities, but not Coulomb

  T

 forces, are
t t hi h t t H it t k l ti t

0

greater at higher temperatures. Hence, it takes a longer time to 

deflect the velocity of a particle by 90 .

     2. Heavier particles collide less because they have greater
momenta at the same  and hence need more collisions to deflect.

     3. Coulomb collisions, though due to long-range forces, are not
a collective effect because the scatterers do not act cooperatively.

T

p y
This is in contrast to Debye shielding and plasma oscillations as
summarized below.

Debye shielding       (collective effect)


Long-range forces plasma oscillations   (collective effect)

Coulomb collisions  (single-particl


e effect)



 52



     

Coulomb forces tend to slow down the directed motion hence

Electrical Conductivity of a Plasma :
1.6 Collisions (continued)

0

    Coulomb forces tend to slow down the directed motion, hence
affect the plasma conductivity. The current density  is given by

, n e

J

                      J v    [Ion current is negligible.]

0where  is the electron density, and the electron velocity  obeys

          [ :  electron collision frequency]   e e e e
d
dt

n

m e mv
v

E v
rate of change of

0

0

0

     Let  
        

     

EE
v v
J J

0 0 0
       



i t
e e ee im e mv E v

rate of change of 
electron momentum

0   

0 0 0 0 0
0

0 0

0

3/2

2

2 2

( ) ( )    

h

   

      

ee e e

n ee
m i m i

n e n e

n e

T

v E J v E

J E0 0
0 0 3/2

( )   ,  where        
ee

eee mm i TJ E

plasma conductivity if e 
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Appendix A: Unit Systems and Dimensions
(Ref. J. D. Jackson, “Classical Electrodynamics,” pp. 775-784)

Unit Systems:

Two systems of electromagnetic units are in common use today:
the SI and Gaussian systems. Regardless of one’s personaly g p
preference, it is important to be familiar with both systems and, in
particular, the conversion from one system to the other. Conversion
formulae can be divided into two categories: “symbol/equationformulae can be divided into two categories: symbol/equation
conversion (such as E and E = q/r2)” and “unit conversion (such as
coulomb)”.

C i f l f b l d i li d iConversion formulae for symbols and equations are listed in
Table 3 on p. 782 of Jackson and conversion formulae for units in
Table 4 on p. 783 (both tables attached on next page). These two
tables are all we need to convert between SI and Gaussian systems.
Correct use of the tables requires practices.
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Appendix A: Unit Systems and Dimensions (continued)

Jackson, p.782, Table 3                           Jackson, p. 783, Table 4
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Appendix A: Unit Systems and Dimensions (continued)

     :  

Consider for example the conversion of the SI equation

Conversion of  symbols and equations

2
04

     Consider, for example, the conversion of  the SI equation

                                      (A.1)

into t

                                      q
r

E



he Gaussian system.

     This involves the conversion of symbols and equations. So we use
Table 3. First, we note from Table 3 (top) that mechanical symbols
(e.g. time, length, mass, force, energy, and frequency) are unchanged 

04

in the conversion. Thus, we only need to deal with electromagnetic
symbols on  sides of (A.1).

     From Table 3, we find  and 4     (A.2)SI SI GGE
both

E q q  0

0

04
( )

     Sub. / 4  G

q q

E



 0and 4 , respectively, for  and  in (A.1),
we obtain the corresponding equation in the Gaussian system:

SIq E q

0
2 2

0 0

4
4 4

                         (A.3)                     G
G GG q qE

r r
E


 

 
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Appendix A: Unit Systems and Dimensions (continued)

    :  
q

Conversion of  units and evaluation of  physical quantities

2
04

    Consider again the SI equation :  (A.1)

     Given 0.01 m, 1 statcoulomb, we may evaluate  in 3 st

                     q
r

E

r q E




 
0

eps:
Step 1: Express and in SI units From Table 3 (bottom)r q 

9

0

12
0

1
36 10

    Step 1: Express ,  ,  and  in SI units. From Table 3 (bottom) 
                 and Table 4, we find  

8.854 10  Farad/m Farad/m 

r q





 


  
 36 10

0.01 m (same as given)               
( 1 stat

r
q



 9

1
3 10

       (A.4)
coulomb)  coulomb

Step 2: Sub the numbers ( ) from (A 4) into (A 1)but not the units




 


1
93 10

21
936 10

4
2

0 4 (0.01)4

    Step 2: Sub. the numbers ( ) from (A.4) into (A.1).

                 This gives  3 10q
r

but not the units

E






 

   

     Step 3: Look 
4

up Table 4 for the SI unit of . As shown in Table 4,

                 the SI unit of  is V/m. Thus, 3 10  V/m          (A.5)

E

E E  
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Appendix A: Unit Systems and Dimensions (continued)

     As another exercise, we write (A.1) in the Gaussian system :

(A 3)qE 2                                    (A.3)

and evaluate  for the same  ( 0.01 m) and 

                                            q
r

E

E r q



 ( 1 statcoulomb). 

     Step 1: Express  and  in Gaussian units. From Table 4, we findr q




p p ,

( 0.01 m) 1 cm
                                             (A.6)

1 statcoulomb (same as given)

Step 2: Sub

q

r
q
 


the numbers ( ) from (A 6) into (A 3)but not the units     Step 2: Sub

2
1
1

. the numbers ( ) from (A.6) into (A.3).

                 This gives  1

Step 3: Look up Table 4 for the Gaussian unit of . We find the

q
r

but not the units

E

E

  

     Step 3: Look up Table 4 for the Gaussian unit of . We find the
                 unit to be statvolt/

E

4

4

cm. Thus, 1 statvolt/cm            (A.7)

     Table 4 shows 1 statvolt/cm 3 10  V/m. Hence, the 2 results

E 

 

 43 10  V/m  in (A.5) and (A.7):  are identical as expected.
1 statvolt/cm

E

E

  
 

 
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Appendix A: Unit Systems and Dimensions (continued)

      
In the Gaussian system the basic units are length ( ) mass ( ) andm
Units and Dimensions :

In the Gaussian system, the basic units are length ( ), mass ( ), and 
time ( ). In the SI system, they are the above plus the current ( ). [See
Table 1 (top) on p. 779 of

m
t I

     

 Jackson.] All other units are derived units.
If a physical quantity is expressed in term of the basic units we     If  a physical quantity is expressed in term of  the basic units, we 

have the dimension of  this quantity. 
     A mechanical quantity has the same dimens

2 2
ion in both systems. 

For example, the acceleration ( / ) has the dimension ofa d x dt
2 2

For example, the acceleration  ( / ) has the dimension of
. From , we obtain the dimension of  force : , which

in turn gives the dimension of work ( ) or energy: 

a d x dt
t f ma m t

f

 


 
 2 2.

An electromagnetic quantity has different dimensions in different
m t

2 2

     An electromagnetic quantity has different dimensions in different
systems. For example, the charge  has the SI dimension of . In the
Gaussian system, from the equation /  and the dim

q It
f q r

1/2 3/2 1
ension of

force we find the Gaussian dimension of to be Sinceq m t
2 2

2 3 1 1/ 2

force, we find the Gaussian dimension of  to be . Since
 has the dimension of energy ( ), the potential  has the SI

dimension of  and the Gaussian dimension of 

q m t
q m t

m t I m

 

 




 1/ 2 1.t 59

     All physical quantities in an equation must be expressed in the
same unit system and all terms must have the same dimension For

Appendix A: Unit Systems and Dimensions (continued)

same unit system and all terms must have the same dimension. For
example, by Stokes's theorem, we have 

                     (
C

d  E  )                                        (A.8)
S

da  E n

2

where both terms have the dimension of (the dimension of ).

     In the definition of the delta function: 

( ) 1a

E

x a dx



 



(A 9)
1

                    ( ) 1,   a x a dx 

1

                                               (A.9)

the RHS is dimensionless. Thus, if  has the dimension of , ( )

must have the dimension of . However, "0" is not to be regarded
di i

x x a





l i Thi i l if i (A 8)as a dimensionless quantity. This is clear if we write (A.8) as

                    ( )  0.

     Well known equations need not be checked for dimensional
C S

d da     E E n 
q

consistency. However, for newly derived equations, a dimensional
check can be a convenient way to find mistakes.
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Appendix B: Delta Functions

( )x a      Definition of Delta Function :  ( )

x1

2
1 2

( ) 0 ,           if 
                                             (B.1)

( ) 1 ,   if  a
a

x a x a

x a dx a a a





  
     aa a1 2

     : Since the delta function is defined in terNote



ms of an integral, 
               it takes an integration to bring out its full meaning. 

1

2

     

     (i) ( ) ( ) ( )                                              a
a f x x a dx f a  

Properties of Delta Function :

0

    (B.2) 

11 1

2 22

0

     (ii) ( ) ( ) ( ) ( ) | ( ) ( )

( ) (B.3)

a aa
aa af x x a dx f x x a f x x a dx

f a

       

 

 


           ( )                                                                           (B.3)f a
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Appendix B: Delta Functions (continued)

 
( )  f x

2 1( ) ( )f a f a
( ) 1

    (iii)  Let  be the root of ( ) 0,  then  
a f a

x a f x 

  
( )f x ( ) ( )f f

aa  a2 1 x1 1

2 2

2

( )
( )

( )
( ) ( )

1
( )

1 1 1
( )

     [ ( )] [ ( )] ( )  

( ) , ( ) 0

a f a
a f a

f a
f

d
dx

f

f x

f f

f x dx f x df x

f df f a

 

 



   


 



aa a x

( )f x
1 2 ( ) ( )  f a f a

2 1 

1

1

2

( )

( )
( )

( )

( )

( )

1 1 1
( )

( ) ,      ( ) 0

 
( ) ,  ( ) 0

f a

f a
f a

f a

f a

f f a

f f a

f df f a

f df f a









 

 




 
    






11 ( )

     : In both expressions above, the integration is from a samller 
value to a larger value, as in the definition of the delta function.

Compare with (2) [ ( )] ( ) [ ]x a

Note

f x x a       (B 4)
( )( )

( )    Compare with (2) [ ( )] ( ) [ ]
f xf a

x af x x a   
   

1 1

 (B.4)

     If ( ) has multiple roots  [ ( ) 0,  1, 2, ], then

[ ( )] ( ) [ ( )] (B 5)

i i

i i

f x x f x i

f x x x x x   

 

   



( ) ( )
         [ ( )] ( ) [ ( )]                   (B.5)

     : Show ( ) ( ) and ( ) ( )/ | |

i
i i

i if x f x
f x x x x x

Exercise a x x a cx x c

  

   

  
 

   
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1 2 3

   
    1. Cartesian coordinates:  = ( , , )
        

x x x
Extension to 3 Dimensions :

x

Appendix B: Delta Functions (continued)

1 1 2 2 3 3
3

1 1

            ( ) ( ) ( ) ( )                              (B.6)

       ( ) ( )V

x x x x x x

d x x x

   
 

       

    

x x

x x


1 2 2 2 3 3 3( ) ( )

if li id

dx x x dx x x dx   


  

2x

3x x0,  if lies outside 
            

1,   if  lies inside 

    2. Cylindrical coordinates:  = ( , , )

V
V

z 


 

x  
x

x

1x

2x
1            ( ) ( ) ( ) ( )                    z z              x x

3

            (B.7)

       ( ) ( )V Vd x d d dz         x x x x z  x


            ( ) ( ) ( )

0,   if  lies outside 
            

1 if lies inside

d d z z dz

V
V

             


 

  
x
x  1,   if  lies inside 

 If  and  both h: ave        Questio

V

xn

x

x the dimension of cm, what are the
            dimensions of ( ) and ( )? [See Appendix (A), Eq. (A.9).]x  x


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
r

r  
Appendix B: Delta Functions (continued)

     3. Spherical coordinates:  = ( , , )   
1 ( ) ( ) ( )

r  

       

r



r

     
2

2

1 ( ) ( ) ( ),  or
sin ( )                        (B.8)

1 ( ) (cos cos ) ( )

r r
r

r r
r

      


      

       
    

r r

1 1
sinsin

By (B.4), (cos cos ) ( )                 

2
3 2

( ),  0

( ) ( ) (cos cos ) ( ) (cos )V V
r rd x r drd d

     

        

  

       r r

3          
[see (B.9) below]

d x

2( ) ( ) ( ) ( )

0, if  lies outside 
                          

1,  if  lies inside 
V l i i i h i l

V V r
V

V
N

  

  

 
r
r



di
Variables are to
be integrated
from smaller to

     : Volume integration in spherical cNote
2 22

0 0 0 0 0 0

1 22 1

oordinates

 sin sin

( ) ( )

dr rd r d r dr d d

d d d d

   



     

 

 




     

  


from smaller to
larger values.

1 22 1
10 1 0

3 2 2

 (cos )           (cos )

                                                           
sin   or  (cos

r dr d d d

d x r drd d r drd

  

  

 
  

 

  
)                                 (B.9)d 
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     Approximate Representations of the Delta Function :

Appendix B: Delta Functions (continued)

     The delta function, ( ),  can be represented analytically by the
following functions because they satisfy the definition of the delta 

functio

x

n in the limit 0 (  > 0). 

2

2 20

( )

1
        ( ) lim                                               x

x

 


 



2
22

0

1
        ( ) lim  e                                            

2

1

x

x








 

0

,   fo
        ( ) lim

1
x


 




r 2 2                              
0,   otherwise         

x    



65

: A total charge  is uniformly distributed around 
i l i f di d i fi it i l thi k W it th

     Problem 1 Q

Appendix B: Delta Functions (continued)

a circular ring of radius  and infinitesimal thickness. Write the
charge density ( ) in cylindrical coordinates. 

     :

a

Solution

 x

z

     Le
3

t ( ) = ( ) ( ) and find  as follows.  

     ( ) ( ) ( )

2

 
 

K r a z K

d x K r a z rdrd dz

K Q

  

   



  

x

x

a

                     2

        
2

Ka Q

Q
K

a





 

 
 a

        ( ) ( ) ( )
2

     :  has the dimension of "charge/volume"

Q
r a z

a
Note

  




  x

 as expected. g p
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2 1     : Prove 4 ( )                                         (B.10)Problem 2 r    r

Appendix B: Delta Functions (continued)


r

r  
3

( ) 0,  if  0
: Definition of ( ) :

( ) 1
     Hence, we need to prove  

r
     Solution

d x





 

 
r

r
r



2 1       (i) 0,  if 0

  

rr  
2 3 31     (ii) 4 ( ) 4d x d xr         r

2

2 21 1 1

     It is convenient to use the spherical coordinates. To prove (i), we
we write  as (see back cover of Jackson)

    ( ) (sin )r 


        2

2 2 2     ( ) (sin )sin sinr r rr r r        2

2 2 2

222

2

1 1 1 1

 

( ) ( ) 0   if   0d d d
dr dr dr rrr rr r rr

 

     

2

2
     :  is undetermined at 0. However, here we are only

              concerned with the region 0.

Note r

r

r
r 

 67

2 1     To prove (ii), we integrate  over a spherical volume Vr

Appendix B: Delta Functions (continued)


2

1

2
2

2 3 31 1 1 1 4

r

rv v s s

r

d x d x da r d
r

r

r r r 


            
e

e 
2

r ddivergence thm.


r

     : Since  > 0 on the spherical surface, again we do not have 
            

r

Note r
2 2   the problem of evaluating /  at  = 0. 

Ch t di t t i hi h

r r r



g

x
x

2

2

1

1
| |

     Change to a coordinate system in which 

and . We obatin from 4 ( )

                   4 ( )                           

r r 



 
    

   x x

r x x

x x r

x x             (B.11)| | ( ) x x ( )
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fvscattered

Reference: A. Beiser, ”Concepts of Modern Physics”
Appendix C: Rutherford Scattering

            fvscattered
particle

          
 

p

incident particle
       ,  ,  im q v

impact

scattering angle

stationary targetq



            
          

                     0p
parameter

impact
0  stationary targetq

0

     The figure above shows the scattering of an incident particle ( ,  )
by a stationary target ( ) for different impact parameters ( ). Note that 

m q
q p0y y g ( ) p p ( )

for 0,  the incident particle will be reflected (i.
q p

p 

0

oe. 180  deflection) 
upon reaching the distance of closest approach .

Since the particle moves in a static electric field its final velocity

p

v     Since the particle moves in a static electric field, its final velocity 
(at ) will be equal in magnitude to the initial 

f

t  
v

0

velocity  (at 
),  i.e. ,  but oriented at an angle  with respect to . if

i

i

t
v 


  

v
v v v 69
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Appendix C: Rutherford Scattering (continued)

    

                  q 

p



2  

2  

particle
orbitsymmetry

   line       
   

   
        

v 
2


  

      

        q 
riv

pA B
0q

   
 
 

     2


 iv

2

(stationary)
Our main interest here is to express the scattering angle as a

0

     Our main interest here is to express the scattering angle  as a 
function of . From the triangle (righe figure) formed of ,  ,  and 

( ) and the equality , we obtain



    
f

f f

i

i i

p

v

v v

v v v v v

            0 2           2 sin                                    (C.1)

    Refer now to the left figure. Lines AB and BC are tangential to the
the orbits at and respectively Since the angular

    

   

f iv v

t t

v v

momen-the orbits at  and , respectively. Since the angular    t t

0

momen-
tum ( ) is conserved in the central-force field, the orbit must
be symmetric about the line, which equally divides the angle ABC.




L mpv
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Appendix C: Rutherford Scattering (continued)

    

                  q

p



2  

2  

particle
orbitsymmetry

   line       
   

   
        

v 
2


  

      

                 q 
riv

pA B
0q

   
 
 

     2


 iv

2

(stationary)

1     is due to the impulse of the Coulomb force : ( ) .

     By symmetry of the orbit,  must be along the symmetry line. 
Thus, we need only to evaluate the of along this




  




m t dt

magnitude

v F   v F

v
v line:Thus, we need only to evaluate the  of  along this magnitude v

1

1
2

line:

      cos . [ :  angle between  and the symmetry line]

     Writing  and noting ( ) ( ),  we obtain

 

   




 

     
m

dt
d

v F dt

dt d t

F

1
2
1
2

( )

( )

2
1 1              cos cos         

 

 



  


 

 
   

d
dt

m m dv F dt F d       (C.2)
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2
0

2
     Conservation of angular momentum requires ,

which gives (C 3)

 



d
dt

dt r
mr mpv

Appendix C: Rutherford Scattering (continued)

1

0

1

which gives                                                                    (C.3)

     Sub. (C.3) into (C.2) [ cos



 




 

v pd
dt

m dv F d
1
2

2
1 1

( )

( )

( ) ( )21

], we obtain
 
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qq

   
  

   


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1 1
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2 2

0

0 0
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0

( ) ( )

( ) ( )
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          cos cos

              2cos                                                                  (C.4)
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  
  



 
qqr

m v p mv p

qq
mv p

v F d d

0
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qq
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0 2
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  From (C.4) and (C.1) [ 2 sin ], we obtain 

  

 

 qq p qq

v v

r

0 0
0 0 0

2
0 0

2
2 2 2 2         sin cos    tan             (C.5)

     (C.5) was derived by Rutherford in 1911 to show that the nuclear 
model

         
qq p qq

mv p mvpv p

of the atom (the positive charge in an atom is concentrated inmodel of the atom (the positive charge in an atom is concentrated in
a small nucleus) was the only model that could explain the measured
results of  particle scattering in passing through a thin foil.  72
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