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1. Textbook: Dwight R. Nicholson,“Introduction to Plasma Theory”
Chapters 1, 2, 6, and 7 (supplemented by two Special Topics).

2. Principal Reference: Krall and Trivelpiece, “Principles of Plasma
Physics”. Other books will be referenced in the lecture notes.

3. Conduct of Class: Physical concepts will be emphasized, while
algebraic details in the lecture notes will often be skipped.
Questions are encouraged. It is assumed that students have at
least gone through the algebra in the lecture notes before
attending classes (important!).

4. Grading Policy: Major: midterm and final; Minor: attendance.
The overall score will be normalized to reflect an average
consistent with other courses.

5. Lecture Notes:

The first three chapters of the lecture notes follow Nicholson and
the rest on selected topics, all starting from basic equations.

As in Nicholson, we adopt the Gaussian unit system. Appendix A
in Ch. 1 discusses the conversion between Gaussian and SI systems.

Equations numbered in the format of (1.1), (1.2)... refer to
Nicholson. Supplementary equations derived in lecture notes, which
will later be referenced, are numbered (1), (2)... [restarting from (1)
in each chapter.] Equations in Appendices A, B...of each chapter are
numbered (A.1), (A.2)...and (B.1), (B.2)...

Page numbers cited in the text (e.g. p. 120) refer to Nicholson.

Section numbers (e.g. Sec. 1.1) refer to Nicholson. Main topics
within each section are highlighted by boldfaced characters. Some
words are typed in italicized characters for attention. Technical terms
which are introduced for the first time are underlined.




Chapter 1: Introduction

1.1 Introduction
Loosely defined, a plasma is a gas of charged particles
(electrons and ions), whose behavior is dominated by electric and
magnetic forces despite the (often unavoidable) presence of neutral
particles. A more specific definition will be given later in this
chapter, following the development of some basic concepts.

The Fourth State of Matter :
The plasma is often referred to as the fourth state of matter, as is
clear from the following phase-transition process:

Solid — Liquid — Gas — Plasma (an ionized gas)

0 T
heat heat heat

Before going into details, we outline below principal properties
of the plasma and the existence of plasma in nature and laboratories.

1.1 Introduction (continued)

Properties of the Plasma:
long-range interaction (through EM fields)
collective behavior (Debye shielding, waves, ...)
self consistency (E, B <> J, p)
non-Maxwellian distribution [ £ = 5y exp(—
free energy 2T
instability
classical diffusion (due to collisions)
anomalous diffusion (due to instabilities)
Existence of the Plasma:
gas discharges (spark gap, lightning, sprite, ....)
non-neutral plasmas (accelerators, microwave tubes,....)
controlled fusion (tokamak, laser fusion, ....)
space physics (ionosphere, solar plasma, ....)
astrophysics (stellar plasmas, radiative processes, ...)
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1.1 Introduction (continued)

Although plasma physics is generally considered to be a branch

of classical physics, quantum effects will set in when inter particle
distances (~1/n,”>, n,: plasma density) are smaller or comparable
to the de Broglie wavelength (% / p) of a thermal particle, i.e. when

1 <h

3= p
0
For the plasmas of interest to most plasma physicists, quantum
effects are negligible.

1.2 Debye Shielding

Consider an infinite, uniform plasma of equal electron and (singly-
charged) ion density n,. To test its property, we put a charge g, at the
origin. Then, at the eqilibrium state, the electrostatic potential ¢ obeys
the Poisson equation: V’p =—47p = 47ze(n, — n;)—4rq.o(r), (1.1)
where n, (n,) s the electron (ion) density in the presence of g;..

To solve (1.1), we make two assumptions:

Assumption (i): The electrons and ions are each in thermal equili-
brium at temperatures 7, and T;, respectively, with densities given by:

:T? < more electrons
n, =nye ¢ — >t (1.2)
—ep yd —eq : potential
n. =nye kT; energy of electrons  (1.3)
(1.2) and (1.3) are well-known | \_more ions —
statistical relations. They will later }— ;;;nt;rr
ep:

be derived in this chapter [see (17).] energy of ions




1.2 Debye Shielding (continued)

Assumption (i1) : kT ? «1and kT ? «1

ep
M, e
n, =nye" ¢ =ny(1+ %)
Then, —ep €

Nicholson uses the notation
T for both temperature and
T kinetic energy. Here, we
np=nee " =ny(l- le.) denote the latter by kT.

and V@ =4ze(n, —n;)—4rq,5(r) [(1.1)] can be written

Vg =4mn,e’ (kLnﬁLkLn)go— 47, S(r) (1)
As ¥ — 0, (1) reduces to V’¢ = —47q,5(r). Hence*,
limp =L, 2)

(2) is the Coulomb potential of ¢,. Physically, this is because
q, makes the dominant contribution to ¢ as r — 0.
*See Eq. (B.10) in Appendix B.

1.2 Debye Shielding (continued)

Forr >0 (1) reduces to
V= r2 4 ("5 9 “F) = dxne (k%*k%)?” (1.3)
Defining the electron Debye length 4, ion Debye length 4.,

and plasma Debye length 4, as

= JKT,  ((47n,e) | = T40KT, eV /my(em™) em | (1.4)

L1 1
ZERR I ()
we may write (1.3)as 54 ( 49y 2 yod (1.6)
— L
l
which has the solution: ¢ = 4¢; P +B<; *D

{hmgp(r)zo B=0
Boundary conditions <% ar give
limo(r) ==~ [(2)] A=gq,




1.2 Debye Shielding (continued)

The solution of (1.1) is thus

7

p=TL¢ " (1.8)
from which we obtain the only component of the electric field:
r
d I
the charge density: shielding cloud
test charge o
p=7Lvip= g0 —I e ™
2 3
4 drri,

and the total charge in a sphere of radius 7 (including test charge):

r

A,
Ororar (1) =$<j‘>E-da= rzE(r) = qﬂ].kﬁ)e D

We find Q;,,,,(r) = 0 as r — oco. This shows that the total charge

in the shielding cloud is —g,, which exactly cancels the test charge.

9

1.2 Debye Shielding (continued)

Discussion: Rewrite p = q,o(r) — _Ir_,

Arrd;

1. When a test charge g, is placed in a plasma, the plasma particles
form a charge cloud of the opposite sign (with total charge —¢, and

most of which in a radius of ~ 4)) to shield g,. As

a result, ¢ due to g, falls off as rl whenr < 4, ¥
[(2)]. But as r increases, ¢ falls off much faster 4!
than - due to the shielding = i &

r ‘\"/ LfbffrJ
cloud. This effect is called PR a fréte cealE
Debye shielding. ol

! LR e
S EERR O RS ~
= __E_:__;:_- _ +‘+++¢_?:‘+ \ !L,JJP__A‘? (}O'MI ;
SIS A +++:* ! k
Debye e
L i 2 Brige e

shielding —

*




1.2 Debye Shielding (continued)
2. Through the shielding charge cloud, the plasma effectively
neutralizes the test charge over a distance of approximately 4.
Hence, a plasme can be regarded as quasineutral (n, =~ n;) if

A, < L, where L is the dimension of the plasma.

Approximate Electron Densities and
Temperatures for Typical Plasmas

Density Temperature A D
Plasma (cm™?3) (°K) (ew)
2
Interstellar gas 10° 10¢ 7xeo,
Gaseous nebula 10? 10 7x10,
Ionosphere (F layer) 10° 10° zx o
Solar corona 106 108 7 3
Tenuous laboratory plasma. 10" 10* X0 ¢
Solar atmosphere - 104 104 7xe0
Dense laboratory plasma 103 10° 7X r‘v'_a
Thermonuclear plasma 10'6 108 FxI0”
Metal 10 10? 2x007™"
Stellar interior 1077 107 - 7 xr0™%

11

1.2 Debye Shielding (continued)
3. Any plasma particle can be regarded as a test charge and is
therefore shielded by the other particles just as the test charge.
kT, ; IR B

. _— = —
2 2 2 2
4rnye Ao Ape  Api

4. Apei =

Physical reason for 4,,,; o /T, ; : When T, ; # 0, the neutralizing

particles, after drawing to the shileding cloud, have the mobility (due
to thermal velocities) to move out of the cloud, thus reducing their
shielding ability.

Physical reason for A, oc L : The shielding ability of the plasma

Jn

increases with its density.




1.2 Debye Shielding (continued)

5. In a plasma, we can have T, # T; for a limited time duration.
As will be shown in Sec. 1.6 [Egs. (36)-(39)], this is because of the
difference in ralaxation time scales: 7, < 7;, < r;,. Asaresult,
it takes a much longer time for 7, and T; to equalize than for the
electrons and ions to thermalize.

6. In the presence of a magnetic field B, forces acting on charges
along B can be different from those acting perpendicular to B. Thus,
even a single species (e.g. the electrons) can have two temperatures,
T, and T, before collisions equalize the two temperatures.

7. Temperatures of laboratory plasmas typically range from 1 eV
to 10 keV (1 eV =11,600 K), but with a density much lower than
that of the air (see table two pages back). Hence, the thermal energy
per unit volume (nkT') can be much lower than that of the ordinary
matter. For example, 7, of a fluorescent light tube is ~ 20,000 K,
but the energy content just barely warms up the glass tube.

1.2 Debye Shielding (continued)
8. In a neutral gas, particles interact with each other only when

they come into close contact. In the plasma, a charged particle
interact simultaneously with many particles through electromagnetic
forces. The short-range binary interactions still take place in a
plasma, but particle interactions are dominated by long range forces.
These forces are important because of the large number of particles
involved. A quantitative comparison between long- and short-range
interactions will be given in Sec. 1.6.

9. Long-range interactions can result in a variety of collective
behavior. Debye shielding is an example of such behavior, in which
many particles respond cooperatively to shield the electrostatic field
of the test charge. Collective behavior is responsible for the richness
of plasma phenomena. For example, there are numerous types of
plasma waves, but there is only one type of wave (the sound wave)
in a neutral gas. However, long-range interactions can also be
stochastic in nature, as in collisions discussed in Sec. 1.6.




1.3 Plasma Parameter

Derivation of 4, (hence Debye shielding) has used the statistical
relations (1.2) and (1.3), which are valid only when there are many
particles in the shielding cloud of radius ~ 4, 1.e.

A=nA >1 (1.14)
where A is called the plasma parameter.

Derivation of 4, has also assumed kT, ; > ep. We take ¢ to be

the average potential at a particle due to its nearest neighbor located

: 1
a distance 1/ > away:

o~ L en'® Coulomb potential is appropriate to (1.9)
r 0 | use because particle distances < A4,. '
Thus, kT, ; > ep implies kT, ; > n,° ¢’ (1.12)

Using 4, ~ \/kT L/ (4znye®), (1.12) gives nyA;, > 1, which is again
(1.14). Thus, (1.14) is the validity condition for the Debye theory.

15

1.4 Plasma Frequency

This section considers another familiar example of the collective
behavior : plasma oscillations. We begin with a development of the
basic equations for a detailed treatment of this important problem.

Basic Equations : First, we will derive the fluid equation (7.5)
in Sec. 7.1 by following a small element of the a-th plasma species,
which has a velocity v, (X, ¢) at position X and time ¢. By Newton's
law of motion, we write n, (X,t)m, % v, (X t)=f,(X,1), (3)
where n,, 1s the particle density of species «, m,, 1s the particle mass,
and f , is the force per unit volume acting on the fluid element. Note

that although n, (X, t) varies with ¢, it is not to be differentiated with
repect to ¢ because f, acts on the mass per unit volume (n,m,, ).
d _0 dy.
For the LHS, we have o V,(X,t)= o7 Va +(dtx Vv,
Since X is the position of the fluid element, %X is the velocity

of the fluid element. Thus, < v (X, )= %Va +(v,-V)v,. (G

> dt @




1.4 Plasma Frequency (continued)
Rewrite (3): n, (X, t)ma 7 v, (X, t)=f,(X,1), 3)
On the RHS, we consider only the Lorentz force density and the
pressure force density:  f,(X,?)=n,q,[E+ % v,xB]-VE,, (5)

where ¢, 1s charge per particle. Note that the fluid pressure "P," has

the unit of force/cm®, while pressure force density "~ VP, " (force

per unit volume due to P,) has the unit of force/cm”.

Pa
Pd‘E\‘]’Pa EI_'_VPa

Sub. the expressions for 4 Y V, (X, t) [(4)] and T (X, ?)[(5)]into (3),
we obtain the fluid equation for species & [same as (7.9)]:

Ry [ 2V, +(V, VIV, 1= 1,q,(E+-Lv,xB)-VE,  (6);,

1.4 Plasma Frequency (continued)
Discussion: In writing the pressure force density as "—=VPE, ",
we have assumed an isotropic velocity distribution for the particles.
This has considerably simplified our derivation of the fluid equation.
A rigorous derivation can be found in Nicholson Sec. 7.2, which
also leads to (7.5), but with a specific expression for P, :

P, =n kT, (7)

Next, we note that conservation of particles requires (see figure)

[ nd’x+[ (n,V,)-da=0 > [, & n,d*x+[ V-(n,v,)dx

— gt +V-(n,v,)=0, |divergence thml (8)

which is the equation of continuity. / nsV

;l(_-——?

A

arbitrary volume v
i

% 18




1.4 Plasma Frequency (continued)
Rewrite the fluid equation:

R[SV, +(V, VIV, 1= 1,4, (E+-Lv, xB)-VP, (6)
and the continuity equation:
%na+v-(nava)=0 (®)

Finally, the EM fields are governed by the Maxwell equations:
V-E=4r)n,q,
V-B=0

__10 9
VXE__TEB ()

_10 4z
VXB—?EE-FT%I’ZQVO{

(6), (8), and (9) form a set of coupled, self-consistent equations,

1.e. the fluid motion is determined by dynamic equations (6) [ =1,2,..]
through E and B, while E and B are determined by field equations (9)
through the fluid motion (which produces p and J). 19

1.4 Plasma Frequency (continued)
Plasma Oscillations :

Assume that the plasma is formed of two fluids (electrons and
singly-charged ions), each obeying (6) and (8), and contributing to
(9). Then, the complete set of equations are

R [V, +(V, - VIV,]=-n,e(E+-Lv,xB)-VP, (10a)
mm [V, +(V; - VIV, ] = me(E +-L-v, xB) - VP (10b)
V-E=4dre(n;,—n,) (10c)
V-B=0 (10d)
VxE:—%%B (10e)
VxB=-LLE+4Z¢(py, +ny,) (10f)
%ne—i_v'(neve)zo (log)
L, +V-(nv,)=0 (10h)
20




1.4 Plasma Frequency (continued)
Although the oscillation behavior involves plasma currents, we
start out with the assumption:
B=0 (11a)
From (10e) and (10f), this is equivalent to assuming
VxE =0 [The oscillation is an electrostatic phenomenon] (11b)
% E+dre(cnv, +nv,)=0 {dlsplacement current} (110)

+particle current =0
which need to be justified later on the basis of the results obtained.
We further make the simplifying assumption:
T,=T =0 (11d)

which, by (7), implies that the plasma is "cold" and hence F, = F, =0.

21

1.4 Plasma Frequency (continued)

Under approximations (11a)-(11d), Egs. (10a)-(10h) reduce to
0

S Vet (Ve V)V, :—mieE (12a)
SVt (v V)V = E (12b)
V-E=4re(n; —n,) (12¢)
L, +V-(n,v,)=0 (12d)
%ni +V-(n,v,)=0 (12¢)

As a simple but important first step, we find the solutions for the
equilibrium state (% =0). The equilibrium solutions are obviously

Voo =V, =E,=0
Mgy = Ny, =N, = const (= infinite and uniform plasma)

where the equilibrium solutions are treated as zero-order quantities

and denoted by subscript "0". )




1.4 Plasma Frequency (continued)
Next, assume that the equilibrium state is slightly perturbed, and
denote the perturbations by subscript "1" as first-order quantities.

Ve= VYo TV,
Vi=VYh TV
N, =ny+n,
l n0+nll
E=E/ +E,

Sub (13) into (12) and keep only first order terms,

ot

0 _

57 Vel =7z Ei

0y

ot Vil —m%El

V-E, =4re(n,;—n,)
gt n,+nV-v, =0

0 —
=n,;+nV-v; =0

(v, -V)v, and
(V;;-V)v,, are
2nd order terms

(13)

(14a)
(14b)
(14¢)
(14d)
(l4e)

v, (X, 1)=
Vi (X, 1)
Moy (X, 1) = Mgy
n, (X, t)=n; e
E, (X,7)

1.4 Plasma Frequency (continued)
The steps from (12) to (14) are called the linearization procedure.
As aresult, (12a)-(12e) reduce to a set of linear differential equations
[(14)], which can be readily solved. However, the solutions are valid
only when the perturbations are sufficiently small (n,, < n,, n;; < n,
--+) so that higher order perturbations can be neglected. Consider a
normal mode by letting

—iwt+ik,z
Velke €

z

_ —iot+ik,z

z
—iwt+ik,z

—iwt+ik,z

_ Elke—la)tﬂkzze

z

Subscripts "e" and "i"
denote particle species.

Subscript "0" denotes
zero-order quantities.

Subscript "1" denotes
first-order quantities.

Subscript "£" denotes
a normal mode.

(15a)
(15b)
(15¢)
(15d)
(15e)

where the normal mode is independent of x, y, and v, , Vi ., 14
n;,.» £y, are the (constant) amplitudes of the respective variables.
It is understood that the LHS is given by the real part of the RHS. 24




1.4 Plasma Frequency (continued)

Sub. (15) into (14), we obtain a set of linear algebraic equations:

—iwv,, = _mLeElk (16a)
—iv,, = mil-Elk (16b)
ik E,, =4me(n,, —n,,) (16c¢)
—ion,, +ik.nyv,, =0 (16d)
—ion,, +ik_nyv,, =0 (16e)

From (16a,b) and (16d,e), we obtain v, , v, , n,,,, and n,, in

terms of £, i

Velk = ia)m Ey (17a)
Vilk _la)m Ey, (17b)
k nye
Mo = =157, By (17¢)
k, nye
My =i By (17d) y

1.4 Plasma Frequency (continued)
k e p

-k,
Sub. n,, =—i—% Zé Ey [(170)] and my =i- 55 By [(17d)]
into ik E,, =4re(n,, —n,,) [(16c)], we obtam

. ck, nge*  nye?
ik E1k=47n—2( v+ Ol_ )E|,,

which can be written (a) — a) ) =0 (18)
47 e? 3, rad
@, =\|—— [=5.64x10%\n,(cm™) <]
where 5
@, = 47[# [= mea) e KO, ]

l l
For (18) to have a non-trivial solution (£, # 0), @ can only have
a single frequency given by @’ =, + 0, = @, (19)
2_ 2 2
where W), =W, + 0, (20)
@, 1s called the plasma frequency. It is a characteristic frequency
of the plasma most frequently encountered in plasma studies. 26




1.4 Plasma Frequency (continued)
To summarize, the solution of this problem is in (15) with the
amplitude constants given by (17) and @ given by (19). As a final
step, we need to justify the assumption B = 0 made in (11a), which

~ (VxE=0 (11b)
AN 2 B v dme(-nv, + 1) =0 (11c)

VxE, =0 21a)

or, upon linearization,
P ‘ {% E, +4zme(—V, +V,)=0  (21b)

_ —iwt+ik,.z
E =E,e e

From (15a,b,e) and (17a,b), we have v, = —ia)Lme E,

z

Va =i E
l
(21a) is clearly satisfied. The LHS of (21b) gives [ bY (17)
— B, +i (@, + 0)E, =i (-0 + @), + @ )E; =0

Hence, (21b) is also satisfied. 27

1.4 Plasma Frequency (continued)

Discussion:

1. In (15), we have assumed a wave solution (i.e. all quantities are
~ g iwrtik:z ). But (19) shows that the frequeny w is fixed at a constant
value @, independent of the wave number .. As a result, the wave
does not propagate (group velocity v, =dw/dk, =0). Thus, what we

have is an oscillation phenomenon rather than a wave phenomenon.

Rewrite (21b): -2 E, +47ne(~V,, +V,) = 0. This equation shows
an exact cancellation of the plasma and displacement currents. Thus,
no magnetic field is generated; the oscillation is electrostatic in nature.

However, if the plasma has a finite temperature (P, and/or P, # 0),
thermal velocities will allow the charges to carry any disturbance
away from the source. In this case, @ will be a function of k&, (hence
v, #0) and plasma oscillations turns into a plasma wave. This will

be treated in Chapter 6.
28




1.4 Plasma Frequency (continued)

2. Since w,, > @,,;, we have from (19) ® ~ w,,,, which implies

pi> pe>
that plasma oscillations are basically an electron effect. Physically,
this is because the wave field varies so rapidly that the much heavier
ions can not respond fast enough to play a significant role. Hence, as

a good approximation, we may let m; — oo, Then, from (16b), v., — 0,
and from (16¢), n;, — 0, 1.e. the ions are essentially stationary. Thus,
we may simply treat the ions as a uniform, neutralizing background
with zero density and velocity perturbations and neglect the ion
dynamic equation [(10b,h)] in the analysis of plasma oscillations, as

is done in Nicholson Sec. 7.2. This approximation will lead to a
plasma frequency of @, = @,,,. Comparing it with the exact value in

(20), w, =, (1+m, /m;)""?, we find the error to be of the order

of m,/ m;.

29

1.4 Plasma Frequency (continued)

3. In Section 1.2, we have shown that the electrostatic field of a
test charge is localized within a distance ~ 4, because of Debye
shielding. Here, we find that a time - varying electric field can extend
well beyond 4, (i.e. we can have k4, < 1). The difference can be
attributed to the "inertia effect" associated with the dynamic behavior
of the plasma.

Consider Eq. (10a) without the nonlinear term (v, - V)V, and the
magnetic force vxB/c,

neme%Ve =-n,eE-VP, (22)
The LHS is the inertia term due to the finite electron mass, the
0

importance of which depends upon the rate of change of v, : 57 V..

For the static case (% =0), the electron inertia (m, ) plays no role

and we have
30




1.4 Plasma Frequency (continued)
-n,eE-VP =0 (23)
Physically, (23) states that the electric force are balanced by the
pressure force, as is required for the static state. The solution of (23)
is [write E = -V ¢(X) and assume P, = n,(X)kT, ]

ep(X)
KT,

1, (X) = nye 24)

where n, and 7, are constants. (24) was used in our earlier derivation

of 4, [see (1.2)].

To consider the dynamic case (% #0), we rewrite (22):

n,m eéatv =-n,eE-VP,

which shows that, depending on its relative magnitude with respect
to the other terms, the LHS may modify the static results (e.g. Debye
shielding) only slightily (e.g. the case of a moving test charge, see

Nicholson, p.3) or in a fundamental way (e.g. plasma oscillations).
31

1.4 Plasma Frequency (continued)

4. The effect of electron inertia is best illustrated by the example
of plasma oscillations. The solid curve in the figure below shows the
perturbed electron density at £ = 0. In order to restore neutrality, the
excess electrons in regions with n,, > 0 will be pushed by the electric
field into regions with n,, < 0. In doing so, the electrons will obtain
maximum velocities at the state of complete neutrality (field energy
becoming kinetic energy). The momentum will then carry the motion
further (an inertia effect). As a result, half a plasma period later, the
electron density turns nonuniform again in the opposite way (dashed
curve). The reverse process then starts to complete the second half of
the oscillation cycle.

1
e t=0 p _2
t=> (7,=5,)

A e P vl
\1/ A

32




1.4 Plasma Frequency (continued)

5. The analysis of plasma oscillations here is a typical example
of fluid treatment of plasma modes. In Ch. 7 of Nicholson, a variety
of plasma modes are derived with fluid equations. As we will show
in Ch. 6, the same phenomena can be analyzed on the basis of a
(more rigorous) kinetic equation called the Vlasov equation. So the
plan of this course is to incorporate most of the materials in Ch. 7
of Nicholson into Ch. 6 of lecture notes for a kinetic treatment.

Ch. 7 will be referenced in (but not part of) the lecture notes.

33

1.5 Other Parameters
The plasma is often immersed in an external magnetic field.
Hence, cyclotron motion of charged particles can influence plasma
behavior. Consider the equation of motion of a single particle of
mass m and charge ¢ in a uniform magnetic field B, = Bye_,

mt=9ixBe, (1.24)
y ion s
C e . .. r¢=0)= (x07 Yoo Zo) 2 \radius - ©Bo
with initial conditions: < £ s
Fe=0)=(0, v, v.) | ¢

The solutions are: I center of
rotation

%
x(t) =x,+ Q—L(l —cosQt) v, =v, sinQt 0> Yo "
Y(O) =y, +sinQt & {v, =v, cosQ (1.25)
z(t) =z, +v,t v, = const.

where Q=

(1.26)

qB, called gyrofrequency or
mc cyclotron frequency

and ¢ carries the sign of the charge. 34




1.5 Other Parameters (continued)

The center of the gyrational motion _
is called the guiding center. The radius 4 1957
N

of gyration is called the Larmor radius

I’L Q BO
Q17 guiding

or gyroradius given by | f /center
v, ' Xo+7., Vo
L =1Al *0> Y0 1.28
L ‘Q‘ | B ( )

S
Relativistic correction: Since there is no electric field in (1.24), the

particle energy does not change and its relativistic factor:
vi v -l

=(1l-=+--2) 2
7=( 2 Cz)

is a constant. For the relativistic correction, we simply replace m with

. . _ gB, |relativistic cyclotron
ym 1n all equations. Thus, Q= yme { frequency (25)
eB B,(Gauss) rad
_ 0 _ 7 Do
For an electron, Q = T 1.76x10 ¥ Sec s
1.6 Collisions
Coulomb collisions Billiard ball collisions

-
q.m qy>My —> 0 my — ©

Properties of Coulomb Collisionsina Plasma:

1. Each particle sees the electric field of all the particles within the
Debye sphere of this particle, 1.e. it is undergoing approximately
A simultaneous Coulomb collisions.

2. Most of the Coulomb collisions are small-angle collisions (i.e.
collisions of small deflection angles). However, the cumulative
effect of many small-angle collisions is greater than that of

large-angle collisions, as will be shown in this section.
36




1.6 Collisions (continued)

€, actual
orbit ‘,},\l Vs
Yo q, m = T7 -— >V,
T impact rt) Tunperturbed
b arameter orbit, z = vt
A% o] 2= 0 ,3

Small - Angle Collisions :

As shown in the figure above, an incident particle with charge ¢
and mass m 1s colliding with (or scattered by) a particle of charge g,
and mass m,. Assume m, — oo, so the scatterer remains stationary.
Define the impact parameter p to be the perpendicular distance from

the scatterer to the unperturbed orbit (|| to the z-axis) of the incident
particle. The actual orbit of the incident particle is r(¢), which makes
an angle 6(¢) with the negative z-axis. Although the figure shows a
repulsive collision, the treantment applies also to attractive collisions.37

1.6 Collisions (continued)

€, actual
orbit ‘;\L v,
vy q, m =TT 5y
T N s R S
p (impact () unp'erturbed
arameter orbit, z = vt
\L p e(t) 5 = O e

do, My > ©
Our primary interest is the scattering angle ¢, defined to be the
angle betwen the initial (# — —o0) and final (# — «) velicities of the
incident particle, 1.e. the angle between vie_ and v.e, +v e,, where

v, is givenby mv, =[  F, (dt= ifz—‘(fg)sine(r)dt (26)

The scattering angle ¢ can be evaluated exactly (see Appendix
C). Here, we calculate it approximately for the case of small-angle
collisions (¢ < 1). For ¢ <1, we have v, < v_ (or v, =v,), which
rsin@ = p (27)

1ves the approximate relations:
& PP {r cosf ~ —v,t (28) 54




1.6 Collisions (continued)

€, actual
orbit Vi Vo
vy q, m =T 5y,
- T impa ;A; . _(t—) ey Tunperturbed
p( bas j orbit, z = vt
\L parameter (1) 5 =0 > 0
Qo> My — O ol
. 490 [~ i3
Sub (27) into (26) = v, x; 7 j sin® Odt (1.32)
. peost __pdo
Divide (28) by (27) = Smg =Vl = dt = oS0 (1.34)

Sub (1.34) into (1.32) = v, x99 ["singao = 24%_ (1 35)

Lomvyp Jo mwp
W P o ~ 2o [valid when p > p, ] (1.37)
vo ~ p (0 ~ p p pO N
2
where p, = nzl\f]go (= %mvg = (%O) (1.36)

D, 1s the distance of closest approach for a head-on collision (p = 0).5

1.6 Collisions (continued)

Large - Angle Collisions : /
Refer to the right figure. The scattering /P
angle is given by (derived in Appendix C) Q,V
tanﬂ = Po [p = 2qq0 ] VOV’/ - (29)
2 2p T mvg Go>My > 0
Po

In the limit ¢ — 0, we have ¢ = D in agreement with (1.37).
If p < p,, (29) gives ¢ =53, which we define to be large-angle
scattering. Then, the cross section (o, ) for large-angle scattering is
Oo,=7 P(?
For an electron moving with velocity v, in a gas of ions (m, — ),
the large-angle collision frequency (y; ) is | for singly-charged ions|

2 2 4
» 4dmnyetq, *4rnye 1

Vi =MVO =NgVyT Py = 5 =——>5 [<—=] (1.38)
mv, m;v; vy

where n, is the ion density. Note that Nichoson uses the notation v for
collision freuencies. Here, we use y to avoid confusion with velocity v




1.6 Collisions (continued)
Small - Angle Collision Frequency :

Random walk: Let's first consider the problem of one-dimensional
random walk. A man starts out from x = 0 and and has walked N steps
of equal length /. The direction of each step (e, or —€ ) is completely

N
random. The total distance away fromx=01s:  Ax" =Y Ax,,
i=1

where Ax; (=+/ or —/) is the i-th step length, and Ax" can be any

multiple of / between — N/ and N/ for a single event. Statistically,
if there are an arbitrarily large number of similar random-walk events,

one can find the average of Ax;, Ax"”, (Ax"")?, etc. Such an average
is called the ensemble average and we denote it by ( ). Evidently,
(Ax;) =0 (hence (Ax)=0) because the i-th steps in all events are
uncorrelated, and <Ax,-Ax j> =0 if i # j because the i-th and j-th steps
of each event are uncorrelated.

=/ 0
Thus, ((Ax)?) = <(§1 Axl.)2> - %1 (Ax)?)+ %} (AxAx )= NP (30)

1.6 Collisions (continued)

Taking the square root of <(Ax“”)2 > = N/* [(30)], we obtain

/<(Axtoz)2> :\/ﬁé, (31)

which shows that, in a great many random-walk events in which a
man has randomly walked N steps of equal length 7, he will be at an
average distance of N/ from where he started. So the more steps
he makes, the further away he will likely be from the starting point,
while the average distance will be proportional to JN rather than N.
The key word here is "average". The actual distance traveled differs
from event to event. It can be any multiple of 7 between 0 and N/,
with the highest probability for 0 and the lowest probability for N /.
The (3-dimensional) diffusion of a molecule in a gas is a typical
random-walk phenomenon. If the molecule moves a mean distance
¢ between collisions, it will be at an average distance of JN? from

the starting point after N steps (¢* is the diffusion coefficient).
4




1.6 Collisions (continued)

Electron - ion collision frequency: Return to the collision problem.
Suppose a test electron with velocity v, is injected into an ion gas.
After N small - angle collisions, all with the same p, the total perturbed

N N
velocities will be AV’ = ;1 Av; AV = 121 Av,, [Avﬁi + AV, = Avi.]

Assume m; — oo and the electron velocity ~ v,e, in all collisions.
Then, from (1.37), we have Avi. = vg pg / p* for all i (32)

This is a random-walk problem in the velocity space. If we repeat
the injection for a large number of times, the ensemble averages are:

(Av, ;)= <Avyi> =0, forall i
< Av, Avxj> = < AvyiAvyj> =0,i#j <(Avm-)2 > is the same for all i.

and ((AV”)?) = <(§1 Avxi)2> _ %1 ((Av,)?) ! N{(Av,)?)
Similarly, <(Av;0t)2> = N<(Avyi)2>. =vop, / p° by (32)
! 2 12
= (A )= N{(Av) )+ N{(Av,)*) = N{(Av,,)?) =N Vopl;o (33),5

1.6 Collisions (continued)

2 12
Rewrite (33): <(AVL)2> :NV(}QI;O [

Assume that the electron (with initial velocity )1}1\

where we have dropped the (33)
superscript "tot" for brevity.

v,€.) 1s injected along the z-axis (see figure) into =
the ion gas. (33) gives the average perpendicular
velocity obtained by the electron after N small-

angle collisions with surrounding ions which are
located on a cylindrical shell of radius p (the impact parameter).

|
z-axis P //p+dp

If the ion density is n,, the rate of collisions made with ions located
between p and p +dp is

‘2—7 = 27nyv, pdp (34)
Differentiating (33) with respect to ¢, we obtain the rate of change of

<(Av L)2> due to collisions with ions located between p and p+dp :

V2 p3 d
Ge((av,)?) =L AR = 2n v pi 3s) .




1.6 Collisions (continued)

Rewrite (35): <(A v )Py = "jp’ﬁo %ftv 27n,v. p ‘f{,’ (35)
Integrating (3 5) over p fromp_. top. . , we obtain the rate of

change of <(Av ) > due to collisions with ions located between p_..

andp, . : 3
Pmax d RN
%<(AVL)2> = 27rn0v3p§.[ A ll; Z :! P Prnax (1.45)
] . - x
Small-angle collisions are, by our p7p+dp

definition, for impact parameters of

p> ‘ Dol = ‘ po‘. Because of the Debye shielding effect,

the Coulomb field is negligible at p > 4,,. So we setp_.. = 4,. Then,
Ay

4= ((Av, ) = 27mgv py In 2 (1.46)

7|

The log factor in (1.46), In(4, / ‘ Do
Ay ! ‘ po‘. This justifies our rough choices of p .. andp,,..

), 1s insensitive to the argument

45

1.6 Collisions (continued)

Rewrite (1.46): %<(Avl)2> =27n,V, Pe ln/1— (1.46)

||
For an estimate of In(4,, / ‘ Dol)s I
we let v, = v, = \JkT, / m, = electron thermal velocity (Nicholson

2 2
denotes v;, by v,). This gives =2e e 36
e OY V) g ‘po‘ MeV? kT (36)
Ignoring the difference between 4, and 4,,, we have from (1.4)
A~ kT, .
4rn,e (1.14)
kT,
Hence, 2~ 4,A%e = 4 2n,2Te~27m 2 Loga,  (1.47)
47m0e
In (1.46), setting ‘ po‘ ~ ‘/1 ‘ ~ A (neglect the factor 2r),
Py
87m0e

we obtain <(A v,) >

In A (1.48)

v 46




1.6 Collisions (continued)
The collision time (7, ) is roughly the time it takes for the particle

to be deflected by 90°. We define it to be the time for ((Av,)*) to
increase to vg according to the initial rate of change in (1.48):

87m et
< <(A D))= InA (1.48)
although v, will have changed cons1derably during this time. Thus,
%«Av ) > T.= vo or 7, 87”’1?%’ which gives the small-angle
collision frequency: Y, = TLC = 8’7;;’}; In A (1.49)

In (1.49), the factor In A is insensitive to A. For most plasmas,

In A ~10. Comparing y, with the large-angle collision frequency
4

. 4 1
in (1.38): 7, :% (note both y,. and y; are o« —), we find
Vo Yo
=2InA>1 (37)
7/L
i.e. small-angle collisions dominate over large-angle collisions. 47

1.6 Collisions (continued)

_ 8mnyet
c m2v3

Rewrite (1.49):

In A (1.49)

7. 1n (1.49) applies to a fest electron of velocity v, colliding with
an ion gas. In a plasma, we have an electron gas colliding with an
ion gas. We may estimate the electron-ion collision frequency (y,,) in

the gas by letting v, = v, = \/kT, / m, . Thus,
_ B _ 8rnyet electron-ion
Vei =7e(Vo =Vr) = my2(kT,)2 In [collision frequency} (38)

To compare the relative magnitude of y,; and @,,,, we write
Vre (472-”062)2 InA ~ Vre In A

Vei = 27n, (KT, ) /14
_ 4nnet 47rn0e \/ kT, VTe Ignore the difference
pe N e Ap | between 4, and 4,,
Thus, 4 =10A ALl <1 (1.51)

Ope ~ 27an A3~ 27h " A

48




1.6 Collisions (continued)

Rewrite (1.51): g;fe - 271[13&% e (1.51)

This shows that Coulomb collisions are not effective in damping

plasma oscillations or waves. For example, if A =10°, the damping
time will be ~10° oscillation periods. As will be considered in Ch.6,

a damping mechanism called Landau damping is much more effective.

Electron - electron collision frequency:

When an electron collides with another electron, the scatterer is
no longer stationary. The collision frequency can be calculated in
the same way by moving to the center-of-mass frame®*. The result,
within a factor or ~ 2, is the same as (38). So, we have

. 8mnyet In electron-electron (39)
Vee ® Vet = i (KT, )72 collision frequency
*See L. Spitzer, Jr., "Physics of Ionized Gases," 2nd ed., Ch. 5.
49
1.6 Collisions (continued)

lon -ion collision frequency:
4

Rewrite (39):7,, = ST 10 A (39)

my2 (kT

The ion-ion collision frequency can be obtained from (39) by
replacing m, with m; and 7, with 7;. Thus,

- Brmet |\ [ion-ion collision}

oml2 (kTP frequency

Comparing (38)-(40), we find, for 7, =T;, y;; 1s smaller by the

factor /% e / .; (or / ) (41)
1

lon - electron collision frequency.
Scattering of ions by electrons (y;,) is like scattering of billiard
balls by ping-pong balls. A similar calculation in the center-of-mass

(40)

frame shows the y;, is another factor of \/m, / m; smaller, so that

m m
Vie :m_l_eyei (OI‘ m_l,eyee) (42) 50




1.6 Collisions (continued)

Relaxation Times : When a plasma is first formed (e.g. by an
electrical discharge), a charged - particle species may be in directed
motion. The directed velocity will then randomize on the time scale
of one collision. Thus, from (38) and (39), we obtain

Electrons thermalize on the time scale of 7,, = 7, (43)
m.

Tons thermalize on the time scale of 7, = ;' (= = Te.)- (44)
e

In addition, electron and ion energies may not be equal when a
plasma is first formed. The energies will equalize via ion-electron
collisions on the time scale of Ty =70 (45)
to reach the final state of equipartition of energy (kT, = kT;).

Comparing (45) with (43) and (44), we find 7;, is greater than

m, m.
: ~—Lr - ~ I
7,, and z;, by the factors: 7, = 3 Toes Tio 3 Tiis (46)

which explains why we can have T, # T; for a limited time.

1.6 Collisions (continued)

Discussion:

1. All the Coulomb collision frequencies have the y oc 1/7°°
dependence, i.e. less collisions at higher temperatures. Physically,
this is because thermal velocities, but not Coulomb forces, are
greater at higher temperatures. Hence, it takes a longer time to
deflect the velocity of a particle by 90°.

2. Heavier particles collide less because they have greater
momenta at the same 7' and hence need more collisions to deflect.

3. Coulomb collisions, though due to long-range forces, are not
a collective effect because the scatterers do not act cooperatively.
This is in contrast to Debye shielding and plasma oscillations as

summarized below.
Debye shielding  (collective effect)

Long-range forces = { plasma oscillations (collective effect)
Coulomb collisions (single-particle effect)




1.6 Collisions (continued)
Electrical Conductivity of a Plasma:
Coulomb forces tend to slow down the directed motion, hence
affect the plasma conductivity. The current density J is given by

J =-nyev, [lon current is negligible.]

where n,, is the electron density, and the electron velocity v obeys

m, ;,ﬂ =—-eE-m,y,v [y,: electron collision frequency]
t —

rate of change of

E E electron momentum
_ —iot . _
Let (Vv =1V, e " = —im,wV,=—-eE,—m,y,V,
J Jo
V=€ _E, = J,=-nev,——"C__E
M (Ye—i®) Me(Ye—io)
N n,e?
= J,=0E,, where c=——"— <~ —C o )7
Me(Ve—i@) | Mefe
plasma conductivity fo<y,
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Appendix A: Unit Systems and Dimensions
(Ref. J. D. Jackson, “Classical Electrodynamics,” pp. 775-784)

Unit Systems:

Two systems of electromagnetic units are in common use today:
the SI and Gaussian systems. Regardless of one’s personal
preference, it is important to be familiar with both systems and, in
particular, the conversion from one system to the other. Conversion
formulae can be divided into two categories: “symbol/equation
conversion (such as E and E = ¢/r?)” and “unit conversion (such as
coulomb)”.

Conversion formulae for symbols and equations are listed in
Table 3 on p. 782 of Jackson and conversion formulae for units in
Table 4 on p. 783 (both tables attached on next page). These two
tables are all we need to convert between SI and Gaussian systems.
Correct use of the tables requires practices.
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Appendix A: Unit Systems and Dimensions (continued)

Table 3 Conversion Table for Symbols and Formulas

Table 4 Conversion Table for Given Amounts of a Physical Quantity

The symbols for mass, length, time, force, and other not specifically electromagnetic
quantities are unchanged. To convert any equation in S1 variables to the corresponding
equation in Gaussian quantities, on both sides of the equation replace the relevant
symbols listed below under “SI" by the corresponding “*Gaussian™ symbols listed on
the left. The reverse transformation is also allowed. Residual powers of pqe, should be
eliminated in favor of the speed of light (e, = 1). Since the length and time symbols
are unchanged, quantities that differ di ionally from one another only by powers of
length andior time are grouped together where possible,

The table is arranged so that a given amount of some physical quantity, expressed as so
many SI or Gaussian units of that quantity, can be expressed as an equivalent number
of units in the other system. Thus the entries in cach row stand for the same amount,
expressed in different units. All factors of 3 (apart from exponents) should, for aceurate
work, be replaced by (2.997 924 58), arising from the numerical value of the velocity of
light. For example, in the row for displacement (D), the entry (127 % 10°) is actually
(2.907 924 58 x 4 x 10°) and “9" is actually 107" ¢* = 898755 . ... Where a name
for a unit has been agreed on or i in common usage, that name is given, Otherwise,
one merely reads so many Gaussian units, or 51 units.

Quantity ‘Gaussian s1 Physical Quantity ~ Symbaol 51 Gaussian
Velocity of light ¢ (pofa) " Length ! 1 meter {m) 1F centimeters {cm)
. e . N Mass m 1 kilogram (kg) 10° grams (g)

Electric fiel A

lectric field (potential, voliage) L[d:.lv'l ey E{d, V) Time ' 1 second (s) 1 second (5)
Displacement Vegldw D 1] Frequency ¥ | hertz (Hz) 1 hertz (Hz)

Charge density (charge, current density, Vime, plg. 5,1, P) plg. 3, 1, p) Force F 1 newton (N} 10° dynes

current, polarization) ‘g’ark g] 1 joule (J) 107 ergs

S . = nergy
Magnetic induction Vigldr B B Power P 1 watt (W) 0 ergs s
Magnetic field H/4mp, H Charge q 1 coulomb (C) Ix 0P statcoulombs

4 P Charge density P 1Cm™ 3x10*  statcoul em ™!

M tizat V4 !

B |z.|.10n o M Current I 1 ampere (A) 3= 0P stalamperes
Conductivity dmegar o Current density J 1Am? 3% 10°  statamp em 2
Dielectric constant e Electric field E  dvoltm ' (Vm™) §x 107" statvoltem™
M " bili Potential &V vl (V) -3 statvolt
Magnetic permeability Hopt " Polarization P 1Cm™? 3% 10°  dipole moment cm?
Resistance (impedance) R(Z)/4me, R(Z) Displacement D 1Cm™ 127 % 107 statvolt em ™'
Inductance Lidwe, L - (statcoul ™)

W ;! Conductivity - 1 mho m™' 9x 10" st
Capacitance dmeC c Resistance R 1 ohm (1) Ix107" sem™!
Capaci € 1farad (F) 9% 10" em
© = 2997 924 58 % 10° mis Magnetic flux @, F 1 weber (Wh) g gauss cm’ or maxwells
Magnetic induction B 1 tesla (T} ot wauss (G)
- 2
%= 8585418735 ... X 107" Fim Magnetic field H 1Am” dar % 1077 oersted (Oe)
o= 12566370 .., % 107 Hm Magnetization M 1Am™? 1 magnetic moment cm”~
Inductance® L 1henry (H) EE [

P
\,"':‘: - 3767303 ... 6

Jackson, p.782, Table 3

Jackson, p. 783, Table 4

Appendix A: Unit Systems and Dimensions (continued)

Conversion of symbols and equations:

Consider, for example, the conversion of the SI equation

E=—1
] ] 47zgor2
into the Gaussian system.

(A.1)

This involves the conversion of symbols and equations. So we use
Table 3. First, we note from Table 3 (top) that mechanical symbols
(e.g. time, length, mass, force, energy, and frequency) are unchanged
in the conversion. Thus, we only need to deal with electromagnetic

symbols on both sides of (A.1).

G
From Table 3, we find £5 — £~ and qSI - 472'5qu (A.2)

. /47ng

Sub. E€/ 4regy and 47r£0qSI , respectively, for £ and g in (A.1),
we obtain the corresponding equation in the Gaussian system:

EG _ 47[80qG
JAmey  Ameyr?

G
=E°=91; (A.3)

r 56




Appendix A: Unit Systems and Dimensions (continued)

Conversion of units and evaluation of physical quantities:

Consider again the Sl equation: E = 9 5 (A.1)
dregr

Given r =0.01 m, g =1 statcoulomb, we may evaluate £ in 3 steps:
Step 1: Express 7, ¢, and &, in SI units. From Table 3 (bottom)
and Table 4, we find

&o —8.854x107!? Farad/m = 3 1 o Farad/m

67rx1

r=0.01 m (same as given) (A.4)
g(=1 statcoulomb) =—L coulomb

3x10°
Step 2: Sub. the numbers (but not the units) from (A.4) into (A.1).
1
This gives E =—1 5= fxlOg > =3x10"
drgyr 47X 9><(O.01)
367x10

Step 3: Look up Table 4 for the SI unit of £. As shown in Table 4,
the SI unit of £ is V/m. Thus, £ =3x10* V/m (A5)

Appendix A: Unit Systems and Dimensions (continued)

As another exercise, we write (A.1) in the Gaussian system :
E=% (A.3)

,
and evaluate £ for the same » (=0.01 m) and g (=1 statcoulomb).

Step 1: Express  and g in Gaussian units. From Table 4, we find

r(=0.01l m)=1cm (A.6)
g =1 statcoulomb (same as given) '

Step 2: Sub. the numbers (but not the units) from (A.6) into (A.3).

This gives E:%:%:l
r
Step 3: Look up Table 4 for the Gaussian unit of £. We find the
unit to be statvolt/cm. Thus, E =1 statvolt/cm (A.7)

Table 4 shows 1 statvolt/cm = 3x10* V/m. Hence, the 2 results

E =3%x10* V/m

are identical as expected.
E =1 statvolt/cm

in (A.5) and (A.7): {
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Appendix A: Unit Systems and Dimensions (continued)

Units and Dimensions :

In the Gaussian system, the basic units are length (/), mass (m), and
time (¢). In the SI system, they are the above plus the current (/).[See
Table 1 (top) on p. 779 of Jackson.] All other units are derived units.

If a physical quantity is expressed in term of the basic units, we
have the dimension of this quantity.

A mechanical quantity has the same dimension in both systems.
For example, the acceleration a (= d 2x/d? ) has the dimension of
(1% From f =ma, we obtain the dimension of force: mlt~%, which
in turn gives the dimension of work (f - /) or energy: mlt2,

An electromagnetic quantity has different dimensions in different
systems. For example, the charge ¢ has the SI dimension of /z. In the

Gaussian system, from the equation f = q2 /? and the dimension of

force, we find the Gaussian dimension of g to be m20>27!. Since

q¢ has the dimension of energy (m€2t_2 ), the potential ¢ has the SI

dimension of m¢%¢ 21" and the Gaussian dimension of m"/2¢"/2+7 1. s

Appendix A: Unit Systems and Dimensions (continued)

All physical quantities in an equation must be expressed in the
same unit system and all terms must have the same dimension. For
example, by Stokes's theorem, we have

$.E-dl=[ (VxE)-nda (A.8)
where both terms have the dimension of / x (the dimension of E).
In the definition of the delta function:
jslz O(x—a)dx =1, (A.9)
the RHS is dimensionless. Thus, if x has the dimension of 7, 6(x —a)

must have the dimension of /™! However, "0" is not to be regarded
as a dimensionless quantity. This is clear if we write (A.8) as

$.E-dL—[,(VxE)-nda=0.

Well known equations need not be checked for dimensional
consistency. However, for newly derived equations, a dimensional

check can be a convenient way to find mistakes.
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Appendix B: Delta Functions

Definition of Delta Function: S(x—a)
o(x—a)=0, ifx+#a
fslzé‘(x—a)dx:l , if ay<a<a,

Note: Since the delta function is defined in terms of an integral,

(B.1)
>X

a a ap

it takes an integration to bring out its full meaning.

Properties of Delta Function :

@) [;> f ()3 (x—a)dx = f(a) (B.2)
0
(i) [;> f ()" (x—a)dx = f(x)S(x—a) |;? = [[* ['(x)5(x - a)dx
=—1"(a) (B.3)
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Appendix B: Delta Functions (continued)

(iii) Let x = a be the root of f(x) = 0, then S(x)

a o fa)> f(a)
[ AU (oM =[G U N /() p laa g

flaz) 1 _ 1 _ '
It 179D = @y =@y T @>0 SO s pia

S o = =l r<0 — Loy

Note: In both expressions above, the integration is from a samller
value to a larger value, as in the deﬁnition of the delta function

Compare with (2) = o[ f(x)] = \f( ) o(x—a)l= \f( ) o(x—a)] (B.4)
If £ (x) has multiple roots x; [f(x;)=0, i=1,2,---], then
oLf(x)]= Z‘f( )‘5(36 x;) [= Z‘f()ﬁ(x x;)] (B.5)

Exercise: Show d(a—x)=0(x—a) and d(cx) =0(x)/ | c|

62




Appendix B: Delta Functions (continued)
Extension to 3 Dimensions:

1. Cartesian coordinates: X = (x}, X,, X3)

(X =X)=6(x —x1)6(x, = x3)(x3 — x3) (B.6)
= [, S(x=X)d x = [ (x; = x{)dix; [ S(x, = xb )dx, [ (e — x5 )y

_ [0, if X' lies outside V' X3 X

|1, ifx’ lies inside V'

2. Cylindrical coordinates: X = (p, 6, z)
S(x=x)= [ 8(p=p)o(0-0)5(z—2)
= [, (x=x)d’x = [, 5(x—X) pd pd 0d:
=[8(p—p")dp[5(0—-0)dO[5(z~2")d=

0, if X' lies outside V’
|1, ifx’ lies inside V'

Question: If x and X both have the dimension of cm, what are the
dimensions of (x) and 6(X)? [See Appendix (A), Eq. (A.9).] &

Appendix B: Delta Functions (continued)
3. Spherical coordinates: r = (», 8, @)
1 _ ! _ ! _ !
o rzsiné’g(r r"o(@ -6 (p—¢'), or
o(r-r)=
riz&(r —7)S(cos 9—1 c0s0)S(p—¢')

By (B.4), 5(cos@—cos0) = 1 5(0-0")=-L,50-6), 0<0<r

sing sind
f, 8 =ra*x = [, U5 5(c03 0 - c03 0)3(p — ') rdrd (cos 0)dp
_ [0, if r' lies outside ¥ d’x
~ 1, if r' lies inside ¥ [see (B.9) below]

Note: Volume integration in spherical coordinates

“ dr[7 rd0]." rsinOdg = [ rdr [Tsin 0dO[ " dg | Variables are to
,[0 JO .[0 '[0 L J 0 be integrated

from smaller to

0 1 2 _
- Io ﬂdrj_l d(cos 0)]0” do — i 1y (cos 6}’)/ larger values.
= d’x =r*sinOdrd@dp or r’drd(cos)dg (B.9),,




Appendix B: Delta Functions (continued)
Approximate Representations of the Delta Function :

The delta function, 6(x), can be represented analytically by the
following functions because they satisfy the definition of the delta

function in the limit ¥ — 0 (¥ > 0).

5(x) = lim L
=0 T xT+y

{ _x%

2

S(x) = lim e

y—0 27y

L for -Z<x<?
5(x)=lim {7’ 2572
72010, otherwise
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Appendix B: Delta Functions (continued)

Problem I. A total charge Q is uniformly distributed around
a circular ring of radius a and infinitesimal thickness. Write the
charge density p(X) in cylindrical coordinates.

Solution:
Let p(X) = Kd(r —a)o(z) and find K as follows.

[p()d’x =K [5(r—a)(z)rdrdOdz 2
=2nKa=Q

:>K:g
2ra

= p(X) = zgaé'(r —a)o(z)

Note: p has the dimension of "charge/volume" as expected.
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Appendix B: Delta Functions (continued)
Problem 2: Prove V2 L = —475(r) (B.10)
5(r) =0, if =0
[s(nd’x=1

Solution: Definition of o(r) :{
Hence, we need to prove

(i) V2 L=0, ifr=0

(i) [V Ld’x=—4z[s(r)d’x =4z ¢

It is convenient to use the spherical coordinates. To prove (i), we
we write V2 as (see back cover of J ackson)

2_ 1 1 0%
r? 81’( ) rzsme(%'(smg )+r2s1n2(9 @?
=vil- gdr( 24 1y —%%(%):o if r#0

p2 . .
Note: L ;218 undetermined at » = 0. However, here we are only

concerned with the region » > 0. 67

Appendix B: Delta Functions (continued)

To prove (i1), we integrate v?2 % over a spherical volume V'

jvvz;d3x:ij-V}1,d3xT@’9Ser- ZLI,‘ dﬁl :—95Sr2#d§2 =—

1

[divergence thm] =% | %4

Note: Since r > 0 on the spherical surface, again we do not have
the problem of evaluating 2 1r*atr=0.

r
Change to a coordinate system in which r = x—Xx’ ¢
: X
and 7 =[x —x/. We obatin from V* % =—475(r)
v? |X_1X,| = —475(x—X') (B.11)

68




Appendix C: Rutherford Scattering

Reference: A. Beiser, ”Concepts of Modern Physics”

scattered Vv
particle o

A
* ! P
\\\ -=27 -
—)-——_..A\_-‘—--—--“f"—. /;/,’
incident particle o -
m, q’lVi . ::: - “_'::;: (/,“,scattering angle
- MO = e ——— 57 .
1mpact/?{i_=,=-—: SEEEEEEEC 24 stationary target

|
parameter Do

The figure above shows the scattering of an incident particle (m, q)
by a stationary target (¢q,) for different impact parameters (p). Note that
for p =0, the incident particle will be reflected (i.e. 180° deflection)
upon reaching the distance of closest approach p,.

Since the particle moves in a static electric field, its final velocity v .
(at t = o) will be equal in magnitude to the initial velocity v, (at ¢ =
—o0), i.e. ‘Vf‘ = ‘Vi‘ =v,, but oriented at an angle ¢ with respect to v,. ¢

Appendix C: Rutherford Scattering (continued)

\'

AV F / f
t particle

symmetryi\ %; 0rb¥1t/ ‘ },\y/
line \ I 7 s
’ . 2
Vl-A' _ %

— g, (stationary)

Our main interest here is to express the scattering angle ¢ as a
function of p. From the triangle (righe figure) formed of v ,, v;, and

AV (=V, —V;) and the equality ‘Vf‘ = ‘Vi‘ =v,, we obtain

=2y, sin% (C.1)
Refer now to the left figure. Lines AB and BC are tangential to the

the orbits at = —co and ¢ = oo, respectively. Since the angular momen-

tum (L = mpv,) is conserved in the central-force field, the orbit must

be symmetric about the line, which equally divides the angle ZABC. 7




Appendix C: Rutherford Scattering (continued)

AV F / !
t particle
symmetry:\}\ ”T_(p" Ol‘b{[/ ‘ j‘p\/ 4
line ' / s
V"'A %
g, (stationary)

AV is due to the impulse of the Coulomb force F: Av = %.[_i F(t)dt.

By symmetry of the orbit, Av must be along the symmetry line.
Thus, we need only to evaluate the magnitude of Av along this line:

Av = %Jﬁ; Fcos@dt. [6: angle between F and the symmetry line]

Writing dt = %d@ and noting 0(t = to) = i%(ﬂ' — @), we obtain
o H(7-p)
Av=4[" Feosdr =L oty cos 0-4L.a0 (C.2)
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Appendix C: Rutherford Scattering (continued)
. . 2
Conservation of angular momentum requires mr W =mpv,,

dr _ _r?
dg vyp
Sub. (C.3) into (C.2) [Av =% [*" " Fcos 4L d6], we obtain
e ' m ) X(z—p) de ">
_ 1 (3= r2 . qq, (370
Av =y j_%(”_mF i cos0d0 Fp e gi /
_ 94 @ = 9% 17
= W 2¢os 7 F 72 Vv 0T p - 9 __(C4)

which gives (C.3)

From (C.4) and (C.1) [Av =2y, sin%], we obtain

P _ 44, [ P _ P _ 2494,
Vosmz_mvop cosy = tan2—2p {po_mvg} (C.5)

(C.5) was derived by Rutherford in 1911 to show that the nuclear
model of the atom (the positive charge in an atom is concentrated in
a small nucleus) was the only model that could explain the measured
results of « particle scattering in passing through a thin foil. 72
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