Chapter 2: Single Particle Motion

2.1 Introduction
A plasma moves in self-consistent electric and magnetic fields,
i.e. a superposition of the self fields produced by the plasma under
study and the prescribed fields from external sources (if any). The
plasma motion and the fields are governed by a set of coupled
dynamic and field equations [e.g. Eq. (3) of Ch. 1].

Here in Ch. 2, we consider single-particle (mass m, charge Q)
motion in external fields (E,, B,) with self-fields neglected. The
particle obeys the equation of motion: mv = q(E, +%V xB,) (2.3)
with E; and B, prescribed in a way to satisfy the Maxwell equaions.

B, = B(O)(1+%)ez = V-B, # 0 (incorrect)

Example:
’ {Bo = —% re, +B(0)(1+{)e, = V-B, =0 (correct)

Understanding of single-particle behavior in prescribed fields is
an important first step toward the understanding of plasma behavior. 1

2.2 ExB Drifts
A Physical Picture :

0B, = D

ion electron
The E x B drift motion is the most common form of single-particle
behavior in a plasma. Refer to the figure above. In a static and uniform
magnetic field B, an ion or electron performs (circular) cyclotron
motion with a Larmor radius given by (see Sec. 1.5)

VJ_
n =—, 1.28
L ‘Q ( )
_ 98,
where =~ [cyclotron frequency | (1.26)

Note that here and in subsequent equations, ¢ (hence Q) carries
the sign of the charge.




2.2 ExB Drifts (continued)

0B, = \ags? »
ion electron
smaller rL\ /1 arger .
0B, | = @Q,w
E, larger r,”  ion electrofl\smaller r

If now a static electric field E; is added, and E, is perpendicular
to B, and points downward (see lower figure), the 1on will then be
decelerated when it moves upward whereas the electron will be acce-
lerated in its upward motion. This will result in a smaller (larger)
instantaneous Larmor radius for the ion (electron). The opposite takes
place in downward motions. As shown in the lower figure, the overall
effect will be a drift motion in the E x B direction for both the ion and
the electron. With a qualitative knowledge of the Ex B drift motion,
we peoceed with quantitative analyses by different methods. 3

2.2 ExB Drifts (continued)
A Simple Derivation of the E x B Drift Velocity :
Rewrite the equation of motion: mv =q(E, +%V xB,) (2.3)
If E,,B, are static and uniform, and E, L B, then the particle
will be continuously turned around by B, while being accelerated
¢ will thus be 0. Hence,

balance of electric force @.1)
and average magnetic force )

by E,. The time-averaged acceleration <V>
m<\'/>t =0=q[E, +%<V>t xB] {

B, x(2.1) = E, xB, = £ B, x({V), xBy) = £[(V), B} =B, ({V), B,)]
Assume 2-D motion on the plane 1 B = <V>t B, =0. Then,
(v), CEB, {Question: IfE, > B,, we have } 2.2)

- vy =cE, /B, > c. What is wrong?
where v is called the E x B drift velocity. v is independent of ¢ and

=V
2
d B2

m, i.e. electrons and ions drift in the same direction with the same
speed. Hence, E x B drifts do not result in a net current in the plasma.




2.2 ExB Drifts (continued)
A More Detailed Analysis::

Rewrite the equation of motion: mv =q(E, +%V xB,) (2.3)
Let B, be along €, and again assume 2-D motion on the X-y plane.
We let V=V, +V 2.4
7 x
v, =CE,xB, /B [(2.2)] oscillatory velocity | B|
Sub. (2.4) into (2.3), we obtain
mvy* =q(E, +¢ Ly xB +ch><B )_CVOSc B, (2.5)
%/_J

—B—OZ(EOxBO)xBO :B—gso(%)—Eo =
(2.5) is in the form of (1.24) in Ch. 1, where we have obtained the
solution: VY =v, (sinQte, +cosQte, ) (2.6)

cE,xB
Thus, the total solution is vV = %2 0 +v L (sinQte, +cosQte ), (2.7)

where vV, 1s a constant. For v, =0, the particle moves in a straight line. ]

2.2 ExB Drifts (continued)

A Thorough Analysis : In obtaining (2.7), we have ignored the
possibility of a contant velocity along B, because it is completely
decoupled from the drift motion. Also, to get the general form of the
solution, initial conditions for determining the amplitude and phase
angle of the oscillatory motion have been ignored. For a complete

solution, we start from the equation of motion: Ee

y
m&v=q(E,+{vxB,) e, (2.3)

e
E,=Ee , 0z initial
with {B _Be and v(t=0)=v,e, T Vyo8y +V;08; {conditionjl (1

(2.3)isa hnear differential equation in v.Let v =v,e, +v,e, +V,e,,
we obtain from (2.3) a set of coupled linear differential equatlons.

m%vX =%B Vy %vx =Qv, (2)
m&v, =qE, - g eBy, = 14dv =gdE -qy, 3)
m&v, =0 v, =0 4)




2.2 ExB Drifts (continued)

Ly, =qy, )
Rewrite: %Vy = —,% E, —Qv, (3)
d, _
F%=0 [y (4)
d

>

<
I
o)

2 cE
F@=Gov =0y, =Q (ME - Q) =2 (F-v)  ©)

from (5) A ExB drift speed
V, =V, sin(Qt+¢))+%

E,e

y
= vy Zé%Vx =V, cos(Qt+¢) *x ©

V, =V, «—constant speed along B,|
where the constants v, and ¢ are to be determined from the initial

B.e,

) cE
V.(t=0)=V,, =V, sin@+-=2
conditions : «( ) =Veg =V, SN By

Vy(t=0)=v,, =V, cosg

2.2 ExB Drifts (continued)

Extension to F x B Drift :

smaller N /smaller r
0B, l = J}QJQ/QL 00000,
larger electron larger 1,

If the electric force E, in the previous model is replaced by a
constant (in time and space) force F, perpendicular to B, (e.g. the
gravitational force), there will still be a drift motion. The new drift

velocity can be obtained from v, = & XB % [(2.2)] by replacing E,
with F, /q. Thus, -
v, =2 quz [F x B drift velocity] (2.8)
0

Note that, under the action of F , the electron and ion will drift
in opposite directions (see figure above).




2.3 Grad-B Drift
A Physical Picture :

smaller r
OO
P 8.8 ion \larger r
o smaller r

B= B(y)e / z

The grad-B drift ("grad" stands for "gradient") takes place in a
static but nonuniform magnetic field. If the B-field increases in the
the positive y-direction (see figure above), the instantaneous Larmor
radius of the charged particle will get smaller (larger) as it moves
upward (downward). As shown the figure, the net effect will be a
drift in the direction of qB x VB, the sign of which depends upon the
sign of g and VB.

2.3 Grad-B Drift (continued)
A Quantitative Analysis:

In a non-uniform B-field, the particle only "sees" the variation
of the field over a distance of the particle's Larmor radius, which is
usually much smaller than the scale length of the field. Thus we may
expand the B-field about the guiding center of the particle using the
formula for Taylor expansion [see (A.4) in Appendix A]:

A(x) =A@)+[(x—-a)-V]A@)+:- (7)
where, in Cartesian coordinates,
(X_a)'v = (Xl _al)aij(l'l'(xz _az)%‘l'()% _a3)ai;(3

ZZi:(Xi _ai)aixi ®)
[(x—a)-V]A(a) = Z(Xi —ai)[a%z Aj(X)e Ix=a
—Z{Z(X -a;)[5 o A (¥)]x=a €] )]




2.3 Grad-B Drift (continued)

Rewrite (7): A(X) = A(a)+[(x—a)-V]A(a)+-~ (7)
Let the vector field A be the magnetic field B and let r be the
position vector of the particle: r = Xxe, + ye, +ze, (10)

Then, we have from (7)
B(r):B(a)+[(r—a)-V]B(a)+--- (11)

Let the particle's guiding center be the origin of coordinetes. We
expand B(X) about the guiding center by settinga=01in (11) and
neglecting higher order terms, then

B(r)=B(0)+(r-V)B(0) (12)
where r is now the vector distance from the guiding center and

(r-V)B(0)= ?{; il Bi(l—ole)-

For simplicity, we write (12)as B =B, +(r-V)B, (2.16)
The equation of motion is thus
mv=dvxB=3vxB, +J[vx(r-V)B,] (2.17) u

2.3 Grad-B Drift (continued)

Rewrite (2.17): mV = dvxB, +3[vx(r-V)B, ] (2.17)

Unlike (2.3), (2.17) is a nonlinear differential equation of variables
rand v (=r). If the Lamor radius r, is much samller than the scale
length L of the magnetic field, then (r-V)B, ~ rTL B, < B, and the 2nd
term on the RHS of (2.17) is much smaller than the 1st term. We may
then solve (2.17) by the perturbation method.

Let {r(t) =" (t)+r,(t) {no free motion along B, } (2.18)

v(t)=r(t)=v,(t)+Vv,(t) | =r and V on X-y plane.

and assume |r,| <|r|,|v,| <|V,|- Sub. (2.18) into (2.17) and equate
the zero-order terms, we obtain [V, x(F, - V)B, 1s a first-order term]

. Qg y

mv, ==V, xB . 2.19

Lo ¢T OX. o ion »+-._ OB, (2.19)
which yields gyromotion given by AR
1QF » \

{ro(t) = 3 (~cosQt, sinQt, 0) = —X (2.25)

. % ./ “zero-order
V,(t) =V, (sinQt, cosQt, 0) o irbit (2.26),




2.3 Grad-B Drift (continued)
Sub. (2.18) into (2.17) and equate the first-order terms, we obtain

mV, =g v, x B, + gV, x(r,-V)B, ? (2.20)
Let B = B(y)e,, then (r -V)B, —yoa;; VB (2.23)
B
=V x(r,-V)B, = oyyo ay VoxyoWey v /7 X
2 y
Z)sttcoth%yOe —\ésinzﬂt%ey 9 B (13)

X zero-order

Sub. (13) into (2.20) and average over t. \“l’ orbit

. v; OB |
= m(V, ) =2(v.) By ~T 2ty 58y (14)
0 0
B, x(14) = (v,), By —({V,), -By) B, + 2"&%%;) Be =0
= <V > 2_31 \8 %I?;/ ey = 282 Y% ¢y Box VB, [grad-B drift velocity] (2.28)
Question: Does B =B(y)e, satisfy V-B=0 ? 13

2.4 Curvature Drifts

By turning a charged particle around to perform gyrational motion,
the magnetic field tends to resist a particle's motion across its field
lines, while the particle is completely free to move along the field line.
This results in a helical orbit for the particle, with its guiding center
following a field line. However, when the field line curves, the partcile
will feel an outward centrifugal force given by

F. = ”FL Le.. fe, is Ry in Nicholson] (2.29)
where Ry 1s the radius of curvature of the magnetic field line, and eg
is an outward unit vector along the radius of curvature and is L to B,.

Sub. K, for F, in the FxB drift formula: cw meagnetic field line

F xB . . W
vy =20 [FxB drift velocity] AV (28)
aB; RB_/ =
we obtain the curvature drift velocity:

L P
¢ = QRgBZ QR

e X, [€,: unit vector along B, | (2.31)




2.4 Curvature Drifts (continued)
A field gradient is usually associated with curved field lines.
Consider, for example, the magnetic field due to a straight, thin wire

carrying current | : B, = B, (r)e, with B,(r) = (15)
B B,

We have from (15): VB, __c?e __r_oer:_R_BeB’ (16)

which results in a drift Veloc1ty given by the

formula in (2.28): v, = ° B, xVB,, [grad-B drift velocity] (2.28)

2 82
where V, is the particle velocity L B, which we denote below by v,

because the particle also has a v. Sub. VB, from (16) into (2.28),
V2

we obtain vV, = 2BZQ B,xVB, = 2QR eg xeo (17)
magnetic field line
Combining (2.31) and (17), we get the < (,ng\vn i ;
total drift velocity in the curved magnetic R, :5;] e;re;ci%on OV 5,
V2 e
field of (16): v = ”QR e x€, g (232),

2.5 Polarization Drift

Rewrite the E x B drift velocity: v, = CEI;BO (2.2)
Assume that E varies with t, then Vv, = % (18)
0

For simplicity, we assume E(t) || E(t) L B, (see figure below). The
acceleration of V; requires a force mv,, which cannot come from E
because E L V. Hence, a polarization drift velocity v, in the direction
of E(t) is developed to provide a magnetic force equal to mv :

. mcE(t)xB y
%—VpXBOZde :B—go (19)

L == e Et) & E(t)
v, ~(vy-By)B, BEEM-[EM BB, 5 ¥
mcB,E(t)<B,] #

®

q
Byx(19) = B x(v,xBj)=

mc2E(t)  cE(t)
qB; QB

=V, = [polarization drift velocity] (2.41)
16




2.5 Polarization Drift (continued)
Polarization Current :
_ mc2E(t) _ cE(t)

P~ g2 OB,

Note: Since v, is proportional to m, the polarization drift
velocity is much faster for the ion than for the electron.

Question: Why is v, proportional to m ?

In a plasma with n, =n; =n,, the polarization drifts lead to a

2.41)

Rewrite: Vv

polarization current density J , given by

n.c2 :
Jp =Ne(V i —Vpe) =|‘_;)—g(mi +m,)E
2 .
= pg—gE (2.43)
where p,, =n,(m; +m,) = n,m; is the mass density.
Applications of the E x B drift and polarization drift can be

found in Sec. 6.12 on the interpretation of the Alfv'en wave and
the magnetosonic wave. 17

2.6 Magnetic Moment
We have thus far considered drift motion across the B-field. In
this section, we consider particle motion along the B-field.
Magnetic Moment of a Gyrating Particle : A current loop of
surface area A and current | produces a mgnetic (dipole) moment :

See, for example, Jackson, "Classical
h= %n {Electrodynamli)cs," Eq. (5.57). } (2.44)
where n is a unit vector L surface area A and pointing pa )i
in the direction determined by the right-hand rule. on
For a gyrating particle in a B-field, we have |
-5 g v _ Qi M W,
A gp? 7V — H="0r e "2 B : g (246)
L="QO2 ion
where W, is the perpendicular energy of the particle /1‘;:\ o
p has a direction opposite to B independent of |\ ‘ /j on

the sign of . = the plasma is diamagnetic. ~ 18




2.6 Magnetic Moment (continued)
Conservation Laws in a Slowly-Varying B-Field :
Expression of near-axis magnetic field :
Before considering the motion of a charged particle in a static,
axisymmetric, nonuniform B-field, we first express the field in
cylindrical coordinates as

B(r,z) =B, (r,z)e, + B,(r,2)e, (20)
80— Fm+ B |
B, —

On or near the z-axis, we have B, < B,, i.e. the B-field lines have
a negligible angular divergence. Hence, the r-dependence of B, can be
neglected and we may approximate B, by B. Integrating (21) overr,

i ~_ 1B _rdB
we obtain B, o T2y (22)
Note: The z-axis here is the X-axis in Nicholson Sec. 2.6 19

2.6 Magnetic Moment (continued)
Forces on a gyating particle in a slowly-varying static B-field:
Consider the motion of a gyrating particle with its guiding center
on the z-axis (see figure). The Larmor radius will vary as the particle

moves axially into a stronger or weaker field, which implies a radial

motion (V, ) for the particle. We assume A—BB <1, (23)

where AB is the change in B seen by the particle in one gyro-period.
Under (23), we may neglect v,

and write V=V,e,+V,€, (24)
Then, with B = B,e, + B,e, [(20)],

we can write down the 3 components

of the magnetic force on the particle and identify the function of each.

(Note: qv,B, <0) increase (decrease) V,
-9 _9 _
F _'C'V><B _'C'(VeBzer TV, Bree VaBrez) (25)

centripetal force for gyrations| |decrease (increase) v, | 2




2.6 Magnetic Moment (continued)
Conservation of the magnetic moment - adiabatic invariant :

Rewrite (25): F = %Vx B= %(Vnger +v,B.e, -v,Be,) (25)

2 2
—F, = quVer~%VB~ qv, 0B __qv 6B _ _mvi oB

tC2 a2 12cQ a2 2B a2
0B ~0 . _roB V )
:— ﬁ’ r BI’N_TW (22) r~r|_ d (26)

where F, is independent of the sign of ¢. In a static B-field, the total
kinetic energy (W) of the particle is a constant. Hence,

d
Sw =L w, +Lm)=0

dt
dyw =_md,2__ dy, _ _ B _, W B
jdtWL_ >tV = MV, gV = -v,F, Vil =i B 27)
du_d Wy 10w, 1 dB [(26)
= G oa BB @ VmTd
— oB 88
_w, valid under assumption (23);
= #=-g =const { 4 s called an adiabatic invariant (2'56)21
2.6 Magnetic Moment (continued)
Conservation of the magnetic flux:
Rewrite (2.56): 4 =tk = const (2.56)
1mv2
(2.56)= u=2 g = const
2 R-hm
B = const
=Bgs 00— ,
2 (1 TP ITIT: #{’ —
=>B&5 Qz = const e —

, 71’ B = const
= Br,” =const

= The magnetic flux enclosed by the particle orbit is conserved.

22




2.6 Magnetic Moment (continued)

Problem: Show that x is conserved in a B-field which varies

slowly with time.

Solution: For simplicity, we assume that B is constant in space,
while varying with time. Assume also that the guiding center 1s
stationary. If the variation of the field (hence the Larmor radius)
is sufficiently slow so that the orbit almost closes on itself in one
revolution, then the change of W, in one revolution is

oW, = %(ﬁ E-d/= qj.s (VxE)-da [S: surface spanning the orbit]

T L RS A
= ?/\\/N—LL = % [0B= %a—? = change of B in on revolution]
= S(W, /B)=6u=0 = u is conserved. (28) ,,

2.6 Magnetic Moment (continued)
Magnetic Mirror - An Example of Adiabatic Motion :
The simplest magnetic mirror field is produced by 2 coils with
equal currents () flowing in the same direction (see figure). If

condition (23) is satisfied, we have B
mv2 max
= 5§ = const. \C\m—;j , (2.56)

4
J—\V&N—ZO/)_-—-_
ALB =By, 1oLV, =Vsy M
mv3,

and V, =V,,. Then, = >5=
min

Since F, =— ,uaa—E; [(26)], as the particle moves away from B

(29)

min
refl by

AN gy — mvio _ m(Vio"'V%o) ie atB= Brefl , we have
the relation: p=55="-=—=5 0 and v oV o
min V,=0and V|, =V" =V, +V,,

v, decreases (hence v, increases). Define a reflection field B

refl

2 2
_ VitV

or Brefl = VEO Bmin (30) 24




2.6 Magnetic Moment (continued)

: : _ VitV _ Biax | mirror
Rewrite (30): B4 = ii’/iozo B, and define R = Bmi’l‘ [ratio (31)
N V2 1
Case (i): B, <Bq or Vioi(i/zzo <R B
=> The particle will pass through 3 i o=,

the B, . point. Qisech o —
2 N/_ IO
Vio  _ 1

Case (i1): B, =B, or Vi,+vZ, R

= The particle will stop at the B, ,, point.

o v, 1
Case (iii): B, > Boq OF Vioino >R
= The particle will be reflected before reaching the B, ,, point.
Thus, if we define a "loss cone” in the (v°, v?) V1o

il L . .
space by 8 < 6, =sin R the particle will be ]\ /oss

. 0 0 1: . 9 cone
lost if its v, and v, lie in the loss cone. LA o SV, s

2.6 Magnetic Moment (continued)

|

lo
(These two figures are taken from G. Schmidt,"Physics of High
Temperature Plasmas".)

Discussion:

For simplicity, we have considered particle motion with the
guiding center on the z-axis (left figure). The off-axis motion
(right figure) is complicated by the grad-B and curvature drifts,
which cause the guiding center to rotate slowly around the z-axis.
However, the same results (conservation of x# and condition for

reflection, etc.) still hold true. 2%




2.6 Magnetic Moment (continued)

Magnetic Cusp - An Example of Non-adiabatic Motion :

If the two coils for the mirror field have opposite currents, a cusp
field will be generated. In the figure below, we show without
derivation a particle orbit in the cusp field. At the far left, the field
varies slowly and the motion is adiabatic. But as the partcile moves
into the region of rapidly varying field, the motion becomes non-
adiabatic and the orbit eventually encircles the z-axis.

The cusp field is often used to generate an axis-encircling electron
beam, in which case the Larmor radius in the adiabatic portion of the
orbit is made negligibly small.

non-adiabatic motion

adiabatic motion

j,

(figure taken from G. Schmidt,"Physics of High Temperature Plasmas") 27

2.8 Ponderomotive Force

The ponderomotive force is a single-particle effect occurring in

spatially-varying, high-frequency electric fields, with or without a
B-field. We assume no B-field in the following analysis.

E = E, coswte, E = E,(X)cos wte,
| S Ty X : > X
) D - N
i%??oal}rlr}l’ ﬁ/ weaker d) stronger
E-field /D E-field ) | E-field

|
i {
A Physical Picture : In a uniform E-field (left figure), a particle
will oscillate with a constant amplitude. If the E-field is stronger to
the right (right figure), the particle will be given a stronger stopping
force, followed by a stronger pushing force, as it turns around on the
right side. The reverse is true as it turns around on the left side. Thus,

the net result is a gradual acceleration to the left. »




2.8 Ponderomotive Force (continued)
A Quantitative Analysis :
This is a one-dimensional problem with the following equation
of motion for the particle:
mX = gE, (X) cos wt (2.71)

. X(t) = X, (t) + X, (1) .
o Eo(x)zE0+xl%’ (32)

X, (t) is a slowly-varing component of X(t), called the
oscillation center.

where 1% (1) is a rapidly-oscillating component of X(t).

E, (treated as a constant) is E (X) evaluated at X,.

dEy(x)
dx

dE :
d_XO (treated as a constant) is evaluated at X,.

Sub. (32) into (2.71), we obtain
m(%, +%) = (E, + X, 52 cos ot (2.72)

29

2.8 Ponderomotive Force (continued)
Rewrite (2.72): m(%, + %) = G(E, + %, S cos at, 2.72)
where X, varies slowly while X, oscillates rapidly. Averaging (2.72)

over one oscillation period gives  mX, = %(X] cos a)t>t (2.73)

Since X, > %, E, > X, % (2.72) gives mX, ~ QE, cosat (2.74)

with the solution: X ~ 950, cos ot (33)
Sub. (33) into (2.73), we obtain

" __quo% 2 _ q%E, %_
™ =~ Me? dx <COS t>t - 2me? dx P’
___ @ dE_ mde -
where F, = Ima? dx = 4 dx [ponderomotive force]  (2.77)
and we have defined V= (X)) .. = r%i;’ [quiver velocity].

The pondermotive force F, is related to (wave field amplitude)’

and hence is important for the study of nonlinear plasma behavior.




2.8 Ponderomotive Force (continued)

Acomputational exercise:

So far in this chapter, we have considered the following types of
drift motion: E x B drift, grad-B drift, curvature drift, and polarization
drift. In addition, we have shown that the magnetic moment of a single
particle is an "adiabatic invariant"; namely, it is a constant in a slowly
varying magnetic field. We have aslo derived a nonlinear force, called
the pondermotive force, in a spatially nonuniform electric field which
varies rapidly in time.

All these effects can be readily tested by computations. The student
1s encouraged to write a simple computer program to solve the single
particle orbits numerically and compare the results with predictions by
the formulae developed in this chapter.

It is also worthwhile to use the relativistic equation of motion [see
Eq. (2) in Special Topic I] in this exercise. This will allow us to verify

that the nonrelativistic E x B drift theory breaks down when E > B.
31

2.9 Diffusion (across the magnetic field)

The guiding center motion gives a simple picture of collisional
effects on particle diffusion across the B-field. For simplicity, we

consider head-on (1800) collisions, but the conclusion also applies

to small-angle collisions.

before after

(1) head-on collisions between
like particles with the same
energy (upper figure)
= no diffusion

(2) head-on collisions between
unlike particles with slightly
different energies (lower figure)
= significant diffusion

32




Appendix A. Taylor Expansion

av 1 a translational operator, which translates
Define e Z —(a V) the argument of the function it operates on
n=0 N! to a distance a away from the argument.

Taylor expansion of f(x+a) and A(X+a) about point X :

f(x+a)= V()= ¥ L(a-V)" f(x)
n=0 "

=f()+(@V)fx+5(a-v)(@av)fx+- (A.1)
A(x+a)= e*VAX) = zﬁ(a.v) A(X)

=A(x)+(a-Vr;_A(x)+;(a-V)(a-V)A(x)+--- (A.2)

Similarly, operating  (X)|,, _, and A(X)|,,,_, with eV we

obtain the Taylor expansion of f (X) and A(X) about point a:
f(x)=f@+[(x-a)-V]f@+][(x-a)-V][(x-a)-V]f(@)+-- (A3)
AX)=A(@)+[(x—a)- V]A(a)+ [(x—a)-V](x-a)-V]A®@)+---(A.4),,

Appendix A. Taylor Expansion (continued)

In (A.1) and (A.2), we have [in Cartesian coordinates]

a- V al aX +a2 aX +a3 aX == z a, ax, (AS)
2
(aV)(aV):%al MZJ:aJG)(J:%alaJGX?GXJ (A.6)
(a-V) f(x):zai & f(x)=a-Vf(x) (A.7)
(a-V)A(X) = za, o (z Ajej)= z(za, aﬁ Aje; (A.8)
Example: (a-V)(x-X')=% [ i o (x —-Xj)kj=zajej=a
J = J
5ij
For scalar functions with a scalar argument, (A.1) & (A.3) reduce to
f(x+a)=f(x)+af ' (x)+1a*f"(x)+- (A.9)

f(x)= f(a)+(x—a)f’(a)+%(x—a)2f"(a)+--- (A.10)
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