
2.1 Introduction

Chapter 2: Single Particle Motion

2.1 Introduction
A plasma moves in self-consistent electric and magnetic fields,

i.e. a superposition of the self fields produced by the plasma under
study and the prescribed fields from external sources (if any). They p f ( y)
plasma motion and the fields are governed by a set of coupled
dynamic and field equations [e.g. Eq. (3) of Ch. 1].
     Here in Ch. 2, we consider single-particle (mass ,  charge )m q
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motion in external fields ( , ) with self-fields neglected. The

particle obeys the equation of motion:  ( )   (2.3)
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  and  prescribed in a way to satisfy the Maxwell equaions.
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     Understanding of single-particle behav

   r zLL r BB e e B

ior in prescribed fields is 
an important first step toward the understanding of plasma behavior. 1

2.2 E×B Drifts

A Physical Picture :

electronion
0B

A Physical Picture :

electron  ion  

     The  drift motion is the most common form of single-particle 
behavior in a plasma. Refer to the figure above. In a static and uniform 

ti fi ld i l t f ( i l )

E B

B l t0magnetic field , an ion or electron performs (circular) B cyclotron 
motion with a Larmor radius given by (see Sec. 1.5)

(1 28)L
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                                   ,                                                   (1.28)

where         cyclotron frequen



 
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qB
mc
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 cy                            (1.26)    
     Note that here and in subsequent equations,  (hence ) carries 
the sign of the charge. 
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2.2 E×B Drifts (continued)

electron  ion  
0B

B
larger Lrsmaller Lr

0E    ion  electron
0B

larger Lr smaller Lr

0 0     If now a static electric field  is added, and   is perpendicular E E0 0

0

, p p
to  and points downward (see lower figure), the ion will then be 
decelerated when it moves upward whereas the electron will 

B
be acce-

lerated in its upward motion. This will result in a smaller (larger)lerated in its upward motion. This will result in a smaller (larger) 
instantaneous Larmor radius for the ion (electron). The opposite takes 
place in downward motions. As shown in the lower figure, the overall 
effect will be a drift motion in the direction for both the ion andE Beffect will be a drift motion in the  direction for both the ion and 
the electron. With a qualitative knowledge of the  drift motion, 
we peoceed with quantitative analyses by di




E B
E B

fferent methods. 3

2.2 E×B Drifts (continued)

1
     

R it th ti f ti ( ) (2 3)
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A Simple Derivation of the E B Drift Velocity :

E B0 0

0 0 0 0

1     Rewrite the equation of motion:  ( )            (2.3) 

     If ,  are static and uniform, and , then the particle
will be cont

  


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E B E B

0inuously turned around by  while being accelerated B

0

0 0
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by . The time-averaged acceleration  will thus be 0. Hence,  

balance of electric force
    0 [ ] 

and average magnetic force
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     Assume 2-D motion on the plane 0. Then, 
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where is called the drift velocity. is independent of andd d qv E B vwhere  is called the drift  velocity.  is independent of  and 
, i.e. electrons and ions drift in the same direction with the same 

speed. Hence,  drifts do not result in a net current 





d d q
m

 v E B v

E B in the plasma. 4



1
     

Rewrite the equation of motion: ( ) (2 3)  m q

A More Detailed Analysis :  

v E v B

2.2 E×B Drifts (continued)

0 0

0

     Rewrite the equation of motion:  ( )            (2.3)
     Let  be along  and again assume 2-D motion on the -  plane.

We let                      

  

z

cm q
x y

v E v B
B e

                                                    (2.4)  osc
dv v v

1 1
     Sub. (2.4) into (2.3), we obtain    

( ) (2 5)       osc osc oscqm qv E v B v B v B

2
0 0 0/  [(2.2)] d c Bv E B 0oscillatory velocity  B

0 0 0 0
1 1               ( )          (2.5)        d

q
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1 1( ) (    
B B

E B B B E B 0 0)   E E

     (2.5) is i

0 0

n the form of (1.24) in Ch. 1, where we have obtained the 

solution:          (sin cos )                                  (2.6)

Th h l l i i ( i

 


   

 

x y
osc

c

v t t
E B

v e e

) (2 7)2
0

0 0Thus, the total solution is  (sin cos    xB
v t tv e e ),    (2.7)

where  is a constant. For 0,  the particle moves in a straight line.  

y

v v
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In obtaining (2.7), we have ignored the 
possibility of a contant velocity along because it is completely
     A Thorough Analysis :

B

2.2 E×B Drifts (continued)

0possibility of a contant velocity along , because it is completely 
decoupled from the drift motion. Also, to get the general form of

B
the 

solution, initial conditions for determining the amplitude and phase
angle of the oscillatory motion have been ignored For a completeangle of the oscillatory motion have been ignored. For a complete 
solution, we start from the equation of motion:    

          0 0
1              ( )                                        (2.3)  d

dt cm qv E v B
0 yE e

xe
B e

0 0

0 0
0 0 0

initial
condition

with  and  ( 0)    (1)

     (2.3) is a linear differential equatio
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x y zx y z
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E
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B
E e

v e e e
B e

n in . Let ,    x x y y z zv v vv  v e e e

0 zB e

( ) q

0

,
we obtain from (2.3) a set of coupled linear differential equations:
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2.2 E×B Drifts (continued)

0     Rewrite:                                                (3)

0                                          
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
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where the constants  and  are to be determined from the initial
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     Extension to F B Drift :   

2.2 E×B Drifts (continued)

iF electron
0B

l

smaller Lrsmaller Lr

larger r

0     If the electric force  in the previous model is replaced by a 
constant (in time and space) force perpendicular to (e g the

qE
F B

   ion   F  electronlarger Lr larger Lr

0constant (in time and space) force  perpendicular to  (e.g. the 
gravitational force), there wil

F B

0
0 0

2
0

l still be a drift motion. The new drift

velocity can be obtained from  [(2.2)] by replacing 


d

c
B

E B
v E

0

0
2
0

with / . Thus,

                           [ drift  velocity]                  


 d

B

c
qB

q
F B

F

v F B (2.8)

     Note that, under the action of , the electron and ion will drift
in opposite directions (see figure above).

F
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     A Physical Picture : 

2.3 Grad-B Drift

B
y 

  

larger r

smaller Lr

ion

     

B 

( )  zB y B = e

B x
z

  

l

 larger Lr
smaller Lr

ion

electron
   

 larger Lrelectron

The grad-  drift ("grad" stands for "gradient") takes place in a 
static but nonuniform magnetic field. If the -field increases in the 
h i i di i (

     B
B

fi b ) h ithe positive -direction (see y figure above), the instantaneous Larmor 
radius of the charged particle will get smaller (larger) as it moves 
upward (downward). As shown the figure, the net effect will be a 
drift in the direction of ,  the sign of which depends upon the 
sign of  and .




q B
q B

B
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:        A Quantitative Analysis

2.3 Grad-B Drift (continued)

     In a non-uniform -field, the particle only "sees" the variation
of the field over a distance of the particle's Larmor radius, which is 
usually much smaller than th

B

e scale length of the field. Thus we may
expand the -field about the guiding center of the particle using the
formula for Taylor expansion [see (A.4) in Appendix A]:

                        ( ) ( ) ( 

B

A x A a  ) ( )                          (7)  x a A a( ) ( ) ( 

1 2 3
1 2 3

1 2 3

) ( ) ( )

where, in Cartesian coordinates,

( ) ) ) )                ( ( (  
        x x xx a x a x ax a

                                )                        ( 
 

ii
i i xx a

 

                         (8)

     ( ) ( ) ( ) ( )[ ]
     

i j
i i j jixx a A x ax a A a x e

                                ( ) ( )                     (9)[ ]{ }
   

i j

j i
i i j jixx a A x ax e
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2.3 Grad-B Drift (continued)

      Rewrite (7): ( ) ( ) ( ) ( )                    (7)

h fi ld b h i fi ld d l b h

    A x A a x a A a

     Let the vector field  be the magnetic field  and let  be the
position vector of the particle:                       (  x y zx y z

A B r
r e e e 10)

     Then, we have from (7)

                     ( ) ( ) ( ) ( )                         (11)

     Let the particle's guiding center be the origin of coordinetes. We
expand ( ) about the guidi

    B r B a r a B a

B x ng center by setting 0 in (11) andap ( ) g g y g ( )
neglecting higher order terms, then

( ) (0) ( ) (0)                                      (12)
where is now the vector distance from the g

                         B r B r B
r uiding center andwhere  is now the vector distance from the gr

0 0

0

uiding center and

            ( ) (0) ( . 

For simplicity, we write (12) as ( ) (2.16)

[ ]{ }
  

 

 
j i

i j jixr B rr B r) e

B = B r B0 0     For simplicity, we write (12) as    ( )            (2.16) 
     The equation of motion is thus

             

 

   q q
c cm

B B r B

v v B = v B0 0[ ( ) ]                     (2.17)   q
c v r B 11

0 0     Rewrite (2.17): [ ( ) ]                      (2.17)
U lik (2 3) (2 17) i li diff ti l ti f i bl

    q q
c cmv = v B v r B

2.3 Grad-B Drift (continued)

    Unlike (2.3), (2.17) is a nonlinear differential equation of variables
and ). If the Lamor radius  is much samlle  Lrr  v ( r

0 0 0

r than the scale 

length  of the magnetic field, then ( ) ~  and the 2nd Lr
LL B Br B

term on the RHS of (2.17) is much smaller than the 1st term. We may
then solve (2.17) by the perturbation method. 

L

0 1 0
( ) ( ) ( ) no free motion along 

L t (2 18)
   


t t tr r r B

    0 1 0

0 1

1 0 1 0

( ) ( ) ( ) g
Let      (2.18)

 and  on -  plane.( ) ( ) ( ) ( )

and assume , . Sub. (2.18) into (2.17) and equate

the zero order terms we obtain [

  
       

 
x yt t t t r vv r v v

r r v v

v ( ) is a first order term] r B

  
y

0r
Ωt

ion 0B

0the zero-order terms, we obtain [v 0 0

0 0 0

( )  is a first-order term]

              ,                                                               (2.19)
which yields gyromotion given by 

 

  q
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r B

v v B

   xΩ  t

zero-order
orbit

0
0( ) ( cos ,  sin ,  0)        

       
v

t t tr

0 0

                                        (2.25)

( ) (sin ,  cos ,  0)                                                   (2.26)




   t v t tv 12



2.3 Grad-B Drift (continued)

       Sub. (2.18) into (2.17) and equate the first-order terms, we obtain

( ) (2 20)q q B B

  
 B

B

y

   

1 1

0 0 0

0 0 0 0

0

                   ( )                                 (2.20)

     Let ( ) , then ( )    z z

q q

B
c c

y

m

B y y



    

  

v v B v r B

B e r B e                              (2.23)

B B 

   

B x 
z

                 B
y

0 0 0 0 0 0 0

2

0 0

2 2
0 0 0 0

( )

    sin cos sin                                  (13)

x y

x y

y x
B B

v B v B

y y

y y

v y v y

t t t

 

 

 

  

    

    

v r B e e

e e

             

  
  x

zero-order
  orbit

first-order
orbit

0r

0 1r r     Sub. (13) into (2.20) and average over .

yy y

t

  

1 1 0

2
0 0

2                                             (14)yt t

v Bq q
c c ym


    v v B e

orbit

1 1
2

0 0 0 0 0

2
0 0

2 2

00

1 1

2

2(14) ( ) 0

y

xt t

v B

v B v

y

yB B




 

      B v v B B e


1 0 0

2 2
0 0 0

2
00

1 1
2 2

 [grad-  drift velocity] (2.28)xt

v B v
B y B

    

B


    v e B B

 Does ( )  satisfy 0 ?z Question : y B  B e B 13

     By turning a charged particle around to perform gyrational motion,
the magnetic field tends to resist a particle's motion its fieldacross

2.4 Curvature Drifts

the magnetic field tends to resist a particle s motion  its field
lines, while the particle is completely free to move 

across
along the field line.

This results in a helical orbit for the particle, with its guiding center 
f ll i fi ld li H h th fi ld li th t ilfollowing a field line. However, when the field line curves, the partcile 
will feel an outward centrifugal for

2
ce given by 

ˆ,   [  is  in Nicholson]                     (2.29) 
B B Bc

mv
R                   F e e R, [ ] ( )

where  is the radius of curvature of the magnetic field line, and 
is an outward unit vector along t

B B B

B B

B
c R

R e

0he radius of curvature and is to .
S b f i th d ift f l

 B
F F F B

 
     

  Be
BR

v
magnetic field line

0e
0

2
0

     Sub.  for  in the  drift formula:

         [  drift velocity]                                       (2.8)

bt i th t d ift l






 d

c
c

qB
F B

F F F B

v F B

it

   

we obtain the curvature drift vel

 0 0 00

2 2

2
0

ocity:

: unit vector along    (2.31)    
B Bd

BB

cmv v
RqR B

  v e B e e e B
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A field gradient is usually associated with curved field lines. 
Consider for example the magnetic field due to a straight thin wire
     

2.4 Curvature Drifts (continued)

0 0 0
2  

Consider, for example, the magnetic field due to a straight, thin wire

carrying current  : ( )  with ( )               I
crI B r B r  B e

0
0 0

2

  2  

            (15)

     We have from (15):  ,         (16)      r r B
B BI
r Rcr

B e e e

Be

0

0 0

2

2
0

2
1

2

( ) ( )

which results in a drift velocity given by the

formula in (2.28): , [grad-  drift velocity] (2.28 

r r B

d

Br Rcr

v
B

B   v B B )

BR

02 B

0 0

0
2 2

where  is the particle velocity , which we denote below by 
because the particle also has a v . Sub. from (16) into (2.28), 




v v

v v
B

B

   
e

v
magnetic field line

0e
direction of

0 0 0

2 2

2
0 22

we obtain                            
   Bd

B

v v
RB

Bv B e e     (17)

     Combining (2.31) and (17), we get the
total drift velocity in the curved magnetic    Be

BR 0 and B Be

0

2 21
2

total drift velocity in the curved magnetic 

field of (16):                                           (2.32)
 tot

Bd
B

v v

R        v e e
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0
2Rewrite the  drift velocity :                      (2.2)


 d
c

B
E B

     E B        v

2.5 Polarization Drift

2
0

0
2
0

( )
     Assume that  varies with ,  then                     (18)

F i li it ( ) (






 

d

d

B

c t
B

t

t

E B
E v

E E ) ( fi b l ) Tht B     For simplicity, we assume ( ) (tE E 0)  (see figure below). The
acceleration of  requires a force ,  which cannot come from 
because . Hence, a polarization drift velocity  in the direction




 




d d

pd

t
m

B
v v E

 E v v

   y 

of ( ) is developed to provide  tE

0
0

2
0

0

( )

a magnetic force equal to :

                                                       (19)


  





d

p d
mc tq

Bc

m

m
E B

v

v B v

     
( ) & ( )t t E E

0B  x
2 2
0 0 0 0 0 0

00

( ) [ ( ) ] ( )                                           


p p B t tB E E B Bv v B B

0 0 0
0 0

2
[ ( ) ]

              

(19) ( )
     


 mc tq

c
B E B

B B v B
   z

0 0 0 2
0

2
00

2 ( ) ( )

(19)  ( )

        [polarization drift velocity]          (2.41)

   

  
 

p

p

B
mc t c t

BqB

c

E E

  B B v B

v
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2 ( ) ( )R it (2 41)
 mc t c tE E

     Polarization Current : 
2.5 Polarization Drift (continued)

2
00

( ) ( )     Rewrite:                                            (2.41)

     : Since  is proportional to ,  the polarization drift 
velocity is much fas

 p

p

mc t c t
BqB

Note m

E Ev

v
ter for the ion than for the electron.velocity is much fas

0

ter for the ion than for the electron.

 Why is   proportional to  ?
     In a plasma with ,  the polarization drifts lead to a
polarization current density given b

:

y
 

p

e i

m
n

 
n n

    Question v

Jpolarization current density  given bypJ

            0
0

2
0

2

2

( ) ( )



    



p pi pe i e
n c
B

c

n e m m   J v v E

0 0

2
0

2
                                                                                (2.43)

where ( )  is the mass density.

Applications of th







  



i e i

m

m

c
B

n m m n m

E

e drift and polarization drift can beE B     Applications of the  drift and polarization drift can be 
found in Sec. 6.12 on the interpretation of the Alfv en wave and 
the magnetosonic wave.




E B
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We have thus far considered drift motion across the -field. In
this section we consider particle motion along the field

B
B


2.6 Magnetic Moment

this section, we consider particle motion along the -field. 
     A current loop of
surface a

B
Magnetic Moment of a Gyrating Particle : 

rea   and current  produces a mgnetic (dipole) moment :

f l k l i l 

A I

 
See, for example, Jackson, "Classical 

             (2.44)
Electrodynamics," Eq. (5.57).

where  is a unit vector surface area

    


IA
c n

n



  and pointing A

22 2 12

in the direction determined by the right-hand rule. 
     For a gyrating particle in a -field, we have




   W
q q

mvI

B

2

2
2

22 2

2

1
2   2
   c2  2 

 

         (2
 

 


 








     
   L

c Wmvv qvq
B Bcv

I

A r
.46)

where is the perpendicular energy of the particleW
ion

where  is the perpendicular energy of the particle.
 has a direction opposite to  independent of

the sign of . the plasma is diamagnetic.





W

q
B

B


Lr

18
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Expression of near axis magnetic field :

     Conservation Laws in a Slowly Varying B Field : 
2.6 Magnetic Moment (continued)

-
Before considering the motion of a charged particle in a static, 

axisymmetric, nonuniform -field, 

Expression of  near axis magnetic field :     
      

B we first express the field in 
li d i l di t

1

cylindrical coordinates as

( , ) ( , ) ( , )                                                (20)

0 ( ) 0
 

 

    z

r r z z

B

r z B r z B r z

rB

       B e e

B z       0 ( ) 0

                    ( )
 



    



r

r

r z

r

rB

rB

rB

                                                  (21)

On or near the axis we have i e the field lines have


 



zB
zr

z B B B     On or near the -axis, we have  , i.e. the -field lines have
a negligible angular divergence. Hence, the -dependence of  can 

 z

z

rz B B
r B

B
be 

neglected and we may approximate  by . Integrating (21) over ,  
 

z

B B
B B r

2 2we obtain                                                     (22)

     : The -axis here is the -axis in N

 
    z

r
B Br r
z zB

Note z x icholson Sec. 2.6 19

2.6 Magnetic Moment (continued)

     -  - :

Consider the motion of a gyrating particle with its guiding center

Forces on a gyating particle in a slowly varying static fieldB

     Consider the motion of a gyrating particle with its guiding center
on the -axis (see figure). The Larmor radius will vary as tz he particle
moves axially into a stronger or weaker field, which implies a radial

i ( ) f h i l ( )B

part icle  orbi

motion ( ) for the particle. We assume  1,                          (23)

where  is the change in  seen by the part
r

B
Bv

B B






icle in one gyro-period.

     Under (23), we may neglect rv( ) y g
and write                                                                 (24)
     Then, with  [(20)],
we can write down

z z

z z

r

r r

v v
B B

  
 

v e e
B e e

the 3 components

( :  0)zNote qv B 

we can write down the 3 components
of the magnetic force on the particle and identify the function of each.
                                           increase (decrease) 

q q

v
               ( z r z r

q q
c c v B v B     F v B e e )                       (25)

           centripetal force for gyrations     decrease (increase) z

r zv B

v

 e
20



     - : 

Rewrite (25): ( ) (25)q q
c c

Conservation of  the magnetic moment  adiabatic invariant

v B v B v B      F v B e e e

2.6 Magnetic Moment (continued)


2 2

2 2 2

     Rewrite (25): ( )          (25)z r z r r z

z r r
q q q qv mv

c c
B B B

c c c c B
B

v
z z z

v B v B v B

F v B v B r

  





 


  


  

 

         



F v B e e e

(26)
 L
vr r0rv (22)  BrB        z   ,                                                                               (26)

where  is independent of the sign of . In a static -field, the total 
kinetic energy ( ) of the particle is a co

zF q
W

B
nstant. Hence, 

 Lr rr
2 (22)r zB

2

2

1
2

2

                           ( ) 0

(27)

z

z z z z z z z

d d

Wmd d d B B
dt dt

Bz zdt dt dt

W W mv

W v mv v v F v v




 

 

  

        

2

2 2

1 1

1 1
    ( )

              0    z z

W dWd dd B

B B
B Bdt dt dt dtB

B B

W

W v W v




 

 

 
 

   

                                   (2.55)

(26)

(27)
2 2  z zz zB B   ( )

valid under assumption (23);
                 (2.56)

 is called an adiabatic invariant
W
B const 
        21

     : Conservation of  the magnetic flux

2.6 Magnetic Moment (continued)

21
2

     Rewrite (2.56):                                        (2.56)

(2 56)



 

 

  

W

mv
B const

const

2

2

2

     (2.56)

              





  

 v
B

B

const

B const
z

2

2              

  



 v
B const

2             LBr const
2 Lr B const

The magnetic flux enclosed by the particle orbit is conserved.

22



    : Show that  is conserved in a -field which varies 
slowly with time

Problem B
2.6 Magnetic Moment (continued)

                   slowly with time.
     : For simplicity, we assume that  is constant in space, 
while varying with time. Ass

Solution B
ume also that the guiding center is 

stationary If the variation of the field (hence the Larmor radius)stationary. If the variation of the field (hence the Larmor radius)
is sufficiently slow so that the orbit almost closes on itself in one 
revolution, then the change of  in one revolution is  


q

W

ion d

r

2

2
2

4 ( )    [ : surface spanning the orbit]

         



 






  
  

   

    






L

S

S

q

vq q qB B
c c ct t t

W d q d S

d rB

E = E a

a



BLr

da
2

2 21
2

2

1         

[



  










 
 
 



  m
vq mc B B

c qB Bt t

W B B

v

B h f i l ti ]B2 [ 

 

  B B

W B tB change of  in on revolution]

 ( / ) 0   is conserved.                               (28)  



   

B

W B
23

    - 
The simplest magnetic mirror field is produced by 2 coils with
Magnetic Mirror An Example of Adiabatic Motion :

2.6 Magnetic Moment (continued)

maxB

0

The simplest magnetic mirror field is produced by 2 coils with
equal currents ( ) flowing in the same direction (see figure). If  
condition (2

I
    

2

3) is satisfied, we have
mv

0I

minB z

0I
0I

0 0,  zv v
0

2

2
0

min

2        .                                                                 (2.56)

     At , let 

 

 



 

 

mv

mv

B const

B B v v

0
0

min2and . Then,                            z z
mv
Bv v

min

                             (29)

     Since  [(26)], as the particle moves away from ,   
 z
B
zF B

0
2

i

(
2

 decreases (hence  increases). Define a reflection field  by

the relation:  



 

z refl

mmv
B

v v B

2 2 2 2
0

2 2
0)

2

i.e. at , we have
 

0 and
   

  

lz ref

fl

v v
B

B B

v v v v vmin2B
0

0

0
2 2

0
2

0
min

2 0 and 

or                                                                     (30)

 






    



z z

z
refl

refl

v v

B

v

v v v v v

B B
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2.6 Magnetic Moment (continued)

0
2 2

0
2

0
min

max

min

mirror     Rewrite (30):  and define   (31)ratio




      
z

refl
v v

v
B
BB B R

minB

maxB

z

2
0

2
0

0

2
0

max

min

1

at o

     Case (i):   or  

          The particle will pass through   





 

  

 


z

refl
v

v

Rv v
B B

0I

min z

0I
0I

0 0,  zv v
m

e p c e w p ss oug
                the 


B ax

2
0

2
0

2
0

max
1

 point.

     Case (ii):   or  

  
z

refl
v

Rv v
B B

0

2
0

2
0

0

2
0

max

max
1

          The particle will stop at the  point.

     Case (iii):  or  





 



 

z

z
refl

v
Rv v

B

B B

0v

0 0

          The particle will be reflected b



z

0 0

1

max

1

efore reaching the  point.

       Thus, if we define a "loss cone" in the ( , )

b i th ti l ill b 



z

B

v v

0zv
L

loss 
cone  

1

0 0

1  space by sin ,  the particle will be 

  lost if its  and  lie in the loss cone.

 



 L

z

R
v v
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2.6 Magnetic Moment (continued)

zz

(These two figures are taken from G. Schmidt,"Physics of High
Temperature Plasmas" )

     :

     For simplicity, we have considered particle motion with the

Discussion

Temperature Plasmas .)

p y, p
guiding center on the -axis (left figure). The off-axis motion 
(right figure) is complicated by the grad-  and curvatur

z
B e drifts,

which cause the guiding center to rotate slowly around the -axiszwhich cause the guiding center to rotate slowly around the axis.
However, the same results (conservation of  and condition for
reflection, etc.) still hold true.


z

26



2.6 Magnetic Moment (continued)

     - -
If the two coils for the mirror field have opposite currents, a cusp
Magnetic Cusp  An Example of Non adiabatic Motion :
If the two coils for the mirror field have opposite currents, a cusp 

field will be generated. In the figure below, we show without 
derivati

     

on a particle orbit in the cusp field. At the far left, the field 
varies slowly and the motion is adiabatic But as the partcile movesvaries slowly and the motion is adiabatic. But as the partcile moves 
into the region of rapidly varying field, the motion becomes non-
adiabatic and the orbit eventually encircles the -axis. 

The cusp field is often used to generate an axis encircling electron
z

non-adiabatic motion

     The cusp field is often used to generate an axis-encircling electron
beam, in which case the Larmor radius in the adiabatic portion of the 
orbit is made negligibly small.

z

adiabatic motion
non adiabatic motion

   

(figure taken from  G . S chm idt,"P hysics of H igh T em perature P lasm as") 27

2.8 Ponderomotive Force
     The ponderomotive force is a single-particle effect occurring in
spatially-varying, high-frequency electric fields, with or without a

-field. We assume no -field in the following analysis. 
     
B B

0 cos xE tE e 0 ( ) cos xE x tE e

   
stronger

-field



E

   
weaker 

-field



E

x x

spatially 
uniform

fieldE

 In a uniform -field (left figure), a particle    A Physical Picture : E
tt

-fieldE

( g ), p
will oscillate with a constant amplitude. If  the -field is stronger to
the right (right figure), the particle will be given a stron

y
E

ger stopping
force followed by a stronger pushing force as it turns around on theforce, followed by a stronger pushing force, as it turns around on the
right side. The reverse is true as it turns around on the left side. Thus,
the net result is a gradual acceleration to the left. 28



      
This is a one-dimensional problem with the following equation
A Quantitative Analysis :

2.8 Ponderomotive Force (continued)

0

     This is a one dimensional problem with the following equation 
of motion for the particle:

                             ( ) cos                                mx qE x t        (2.71)

( ) ( ) ( ) t t t0 1

0 0 1
0

( ) ( ) ( )
     Let ,                                                      (32)

( )

( ) is a slowly varing component of ( ) called the

 
  

dE
dx

x t x t x t

E x E x

x t x t 0 ( ) is a slowly-varing component of ( ),  called the
         oscillation 

where 

x t x t

1

center.
( ) is a rapidly-oscillating component of ( ).

(t t d t t) i ( ) l t d t







x t x t

E E0 0 0

0
0 0( )

 (treated as a constant) is ( ) evaluated at .

 (treated as a constant) is evaluated at .

S b (32) i (2 71)





dE dE x
dx dx

E E x x

x

b i     Sub. (32) into (2.71)

0 1 0 1
0

, we obtain

                 ( ) ( ) cos                             (2.72)    dE
dxm x x q E x t

29

0 1 0 1
0     Rewrite (2.72): ( ) ( ) cos ,                 (2.72)    dE

dxm x x q E x t

2.8 Ponderomotive Force (continued)

0 1

0 1
0

where  varies slowly while oscillates rapidly. Averaging (2.72)

over one oscillation period gives      

 



 

 dE
dx

x x

mx q x cos      (2.73)
t

dE

t

1 0 0 1 1 0

1

0

0
2

     Since ,  , (2.72) gives  cos    (2.74)

with the solution:                   cos                            (33)







 

    dE

qE
dx

m

x x E x mx qE t

x t

     Sub. (33) into (2.73), 
m

0

2 2
0 0 0 0
2 2

2

2

we obtain

              cos ,      pt

q E dE q E dE
m mdx dxmx t F

1 max

22 2
0

2

0

4 4where     [ponderomotive force]      (2.77)

and we have defined ( )   [quiver velocity].





   

 



 

p
dEq dvm

qE
m dx dx

m

F

v x

     T
m

2he pondermotive force  is related to (wave field amplitude)
and hence is important for the study of nonlinear plasma behavior.

pF
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2.8 Ponderomotive Force (continued)

     :
So far in this chapter we have considered the following types of
A computational exercise

     So far in this chapter, we have considered the following types of
drift motion:  drift, grad-  drift, curvature drift, and polarization
drift. In addition, we have 

E B B
shown that the magnetic moment of a single

particle is an "adiabatic invariant"; namely it is a constant in a slowlyparticle is an adiabatic invariant ; namely, it is a constant in a slowly
varying magnetic field. We have aslo derived a nonlinear force, called
the pondermotive force, in a spatially nonuniform electric field which

i idl i tivaries rapidly in time.
     All these effects can be readily tested by computations. The student
is encouraged to write a simple computer program to solve the single

i l bi i ll d h l i h di i bparticle orbits numerically and compare the results with predictions by
the formulae developed in this chapter.
     It is also worthwhile to use the relativistic equation of motion [see 
Eq. (2) in Special Topic I] in this exercise. This will allow us to verify
that the nonrelativistic  drift theory breaks down when . E BE B

31

2.9 Diffusion (across the magnetic field)

     The guiding center motion gives a simple picture of collisional 
effects on particle diffusion across the -field. For simplicity, we

consider head-on (180 ) collisions, but the conclusion also app
B

lies
to small-angle collisions.  

ee

before after
g

   (1) head-on collisions between     
         like particles with the same

( fi ) ee

afterbefore

         energy (upper figure)
        no diffusion 

e
e

afterbefore
   (2) head-on collisions between 
         unlike particles with slightly
         different energies (lower figure)

   

ee
        significant diffusion
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Appendix A. Taylor Expansion

 
a translational operator, which translates 
th t f th f ti it t

1
Define ne

 
 

   a a 
0

the argument of the function it operates on
to a distance  away from the argument.

     Define 
!

     Taylor expansion of  ( ) and 

n
e

n

f


   

  


a
a

x a A

 1

( ) about point :
n


 a

x a x

 

    

1
!

0
1
2

( )  ( ) ( )

 ( ) ( ) ( )              (A.1)

n
n

n
f e f f

f f f




    


      



ax a x a x

x a x a a x 

 

    

1
!

0
1
2

( )  ( ) ( )

 ( ) ( ) ( )             (A.2)

n
n

n
e







    

       

aA x a A x a A x

A x a A x a a A x     2

      Simila



at at 
( )rly, operating ( )  and ( )  with , we 

obtain the Taylor expansion of ( ) and ( ) about point :

f e

f


 


x a x a

x ax A x

x A x a

  
 

1
2

1
2

( ) ( ) ( ) ( ) [( ) ][( ) ] ( )  (A.3)

( ) ( ) ( ) ( ) [(

f f f f         

     

x a x a a x a x a a

A x A a x a A a x a


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Appendix A. Taylor Expansion (continued)

3

       In (A.1) and (A.2), we have [in Cartesian coordinates]

  
1 2 3
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1 2 3

1
                                  (A.5)
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   ( )                (A.8)
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     For scalar functions with a scalar argument, (A.1) & (A.3) reduce to

( ) ( ) ( ) ( ) (A 9)     f x a f x af x a f x1
2

21
2

          ( ) ( ) ( ) ( )                            (A.9)

          ( ) ( ) ( ) ( ) ( ) ( )       

    

      





f x a f x af x a f x

f x f a x a f a x a f a          (A.10)
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