CHAPTER 6: Vlasov Equation | Partl

6.1 Introduction
Distribution Function, Kinetic Equation, and Kinetic Theory :
The distribution function f (x,v,t) gives the particle density of a
certain species in the 6-dimensional phase space of x and v at timett.
Thus, f(x,v,t)d3xd3v is the total number of particles in the differen-
tial volume d3xd®v at point (x,v) and time t.
A Kinetic equation describes the time evolution of f (x,v,t). The

Kinetic theories in Chs. 3-5 derive various forms of kinetic equations.
In most cases, however, the plasma behavior can be described by an
approximate kinetic equation, called the Vlasov equation, which

simply neglects the complications caused by collisions.

By ignoring collisions, we may start out without the knowledge of
Chs. 3-5 and proceed directly to the derivation of the Vlasov equation
(also called the collisionless Boltzmann equation).

6.1 Introduction (continued)

The Vlasov Equation : As shown in Sec. 2.9, a collision can
result in an abrupt change of two colliding particles' velocities and
their instant escape from a small element in the x-v space, which
contains the colliding particles before the collision.

However, if collisions are neglected (valid on a time scale < the
collision time, see Sec. 1.6), particles in an element at position A in
the x-v space will wander in continuous curves to v
position B (see figure). Thus, the total number in the l B
element is conserved, and f (x,v,t) obeys an equation Af
of continuity, which takes the form (see next page): X

LEOGV )+ Vo, [T VDX V)] =0 (1)

In (1), Vo, [= (%’%’%’av%’av%’a%)] is a 6-dimensional
divergence operator and (X, V) [= (X, ¥, Z,Vy,Vy,V,)] can be regarded
as a 6-dimensional "velocity" vector in the x-v space.




6.1 Introduction (continued)

To show that % f(x,v,t) +V, [T XV,1)(X Vv)]=0 [(1)] implies

conservation of particles, we integrate it over N ds
an arbitrary volume V; enclosed by surface S ' 6
in the x-v space: ° X

%jve f(x,v,t)d*xd3 + IVe Viw [T XV, )%, ¥)]d*xd*v =0

N(t) 95 5, f (X, t)(X, V)-dsg
(by 6-dimensional divergence theorem)
- % N (t) + 9886 f(x,V,1)(X, V) - dsg =0, 2)

where N (t) is the total number of particles in Vg, f (x,v,t)(X, V) is the
6-dimensional "particle flux™ in the x-v space, ds; is a 6-dimensional
differential surface area of Sy, with a direction normal to S, pointing

outward. Thus, (2) states that the rate of increase (decrease) of the
total number of particles in V; equals the partcle flux into (out of) V.

6.1 Introduction (continued)
Rewrite: % fxVv,t)+V,,  [fXV)X V)]=0 (1)
In (1), Vi, [T (XV,0(X V)]
= 5 )+ 5 () + & (12) + - () + 50 (W) + 2~ ( V)
=V, - (fKX)+ V- (V) (6.1)

X=V
fV, V+V-V f+fV, - V+V-V, f

where, because Vv is an independent variable, we have V,-v=0 (3)
In general, V,, - v does not vanish. But for v = %(E+%Vx B),

V,-E=0 [E does not depend on v]

V,-(vxB)=B-(V,xVv)-Vv(V,xB)=0-0=0

which givess ~ V,-v=mV, - (E+%vxB)=0 (4)
Thus, Vyy -[f (X, V, )% V)] =V -V, f +H(E+LvxB)-V,

and (1) becomes % f+v.v,f+(E+LvxB)-v,f=0, (65)

which is the Vlasov equation. 4

we have {




6.1 Introduction (continued)

Physical Interpretation of the Vlasov Equation :
The Valsov equation -2 f +v-V, f +gh(E+£vxB)-V, f =0 (6.5)

can be written v %(Ei%vx B)
d _0 dx . dv _
af(x,v,t)_ﬁf+E fo+dt v, f=0, 5)
where % is the total time derivative of f. The total time derivative

(also called a convective derivative) follows the orbit* of a particle in
the x-v space. It evaluates the variation of f due to the change of the
particle position in the x-v space as well as the explicit time variation
of f. Thus, (6.5) or (5) can be interpreted as: Along a particle’s orbit
in the x-v space, the particle density f (x,v,t) remains unchanged.

*In the 6-dimensional x-v space, particles at a point (x,v) have the
same velociy v. Hence, the orbit of a particle is also the orbit of an
infinistesimal element containing the particle. In the 3-dimensional
X-space, by contrast, particles at a point x have a range of velocities. s

6.1 Introduction (continued)

This interpretation is consistent with the fact that the sum of
(3) and (4) gives Vv (X V)=V, -x+V, -v=0, (6)
i.e. the 6-dimensional divergence of the 6-dimensional "velocity"
(X, v) vanishes. This implies that a collisionless Vv
plasma is incompressible. Hence, the volume of l B
an elements (thus the particle density f) will be Af
unchanged as it moves from A to B. X

A specific example:

Consider the simple case of a group of particles initially located in
asquare in the x-v, space (area A, lower figure). If the particles are

force free, those on the upper edge will move at the fastest (equal and
constant) speed, while those on the lower edge Vv

move at the slowest (equal and constant) speed. B
Then, some time later, the square will become a A

parallelogram of the same area (area B, lower figure). X 6




6.1 Introduction (continued)

Effect of collisions :
If there are collisions, they will cause a variation of f at the

symbolic rate of (% f)eon» Which should be added to (6.5) to

give
L4V V f 4+ (E+3vxB)-V, f =(Z e,
while the specfic form of (% f).n depends on interparticle forces.

Throughout this course, the (% f)eon term will be neglected.

6.1 Introduction (continued)
Complete Set of Equations : We now have the following set
of self-consistent, coupled particle and field equations:

%fa+v-Vfa+%(E+%va)-vaa=0 (6.5)
V-B=0 For simplicity, we shall (7)
V-E=4np henthforth denote V, by V. 8
VxE = _%g B (9)
VxB=1SLE+4E] (10)
px0) =20, T, (x v,Dd% )
where “ (12)

I t)=Xq,[ f, (x v,t)vd’

Each particle species, denoted by the subscript
by a separate Valsov equation, and g, carries the sign of the charge. .

"a", is governed




6.2 Equilibrium Solutions.

General Form of Equilibrium Solutions : As shown in (5),
the Vlasov equation can be written as a total time derivative:

d _ 0 dx dv _
af(x,v,t)—af+E~Vf +E'va =0, 5)

where % follows the orbit of a particle whose position and velocity

at time t is x and v, respectively. Thus, any fuction of constants of the
motion along the orbit of the particle, C, = C, (x, v,t), is a solution of
of dc,
oC; dt
because, by the definition of constant of the motion,
dc;
dt
The equilibrium solution (denoted by subscript "0") of interest to
us is a steady-state solution formed of constants of the motion that do
not depend explicitly ont, i.e. f, = f,(C,,C,...) with C, =C; (X, V).

the Vlasov equation, i.e. % f(C,C,..)=2 =0,
|

—O0c +WX.yc 1.y C =
=5t Ci VG + g VWGi =0.

9

6.2 Equilibrium Solutions (continued)

Examples of Constants of the Motion :
1.1fBy=E; =0, vy, v,, and v, are constants of the motion.

2.1fE, =0, B, =By, =const., v , v, are constants of the motion.
3. The motion of a charged particle (mass m and charge q) in EM
fields (represented by potentials A and ¢) is governed by Lagrange's
equation: [Goldstein, Poole, & Safko, "Classical Mechanics," 3rd ed., p. 21]
doL_oL j_1 23 (13)=>mI —qE+JvxB| (13)

dt o, ~ og; .
) . . See Goldstein, Poole, &
q; IS a position coordinate. Safko, Sec. 1.5.
where

L =%mv2 +%v -A—q¢ [L: Lagrangian; v: particle velocity]

In cylindrical coordinates, we have g, = (r,8,2), §; = (r,0,12),
Vi =12 +1%0° + 2%, and v- A = A + 1A, + ZA,. If the fields A and ¢

are independent of 4, (13) gives %% = % =0. Hence,
oL

6 mrv, +% rA, =const [canonical angular momentum] (14),,




6.2 Equilibrium Solutions (continued)

Examples of Equilibrium Solutions:

In contrast to the Boltzmann equation, which has only one
equilibrium solution (the Maxwellian distribution), the Vlasov
equation has an infinite number of possible equilibrium solutions.
But they exist on a time scale short compared with the collision time.

The choice of the equilibrium solution depends on how the
plasma is formed. For example, if we inject two counter streaming
electrons of velocity vye, and —v,e, into a neutralizing background
of cold ions, we have the following equilibrium solutions for the
electrons and ions (of equal density n):

oo = 3 M,0(v, )5V, [S(V, —V,) +5(v, —V,)]
1:iO = n05(\/x )5(Vy )5(\/2 )

which correctly represent the electron/ion distributions on a time
scale short compared with the collision time.

(15)

11

6.2 Equilibrium Solutions (continued)

Given sufficient time, collisions-will first randomize electron
velocities and eventually equalize electron and ion temperatures.
The fianl state will be an equilibrium solution in the form of the
Maxwellian distribution for both the electrons and ions:

2 n 2
fo(v)=n, (%)3/2 exp(— g]IXT) = (272.)3?/2\/% eXp(_ZVTTz) (16)

where vy =+KT /m is the thermal speed, T is the same for both
species, m =m, for the electrons and m = m, for the ions. In (16),
f, has been normalized to give a uniform particle density of n,

in x-space [[ f,(v)d®v=n,].
J‘°° X2ne—ax2 dx = 135--(2n-1) \/*

0 2n+lan
Useful formulae: (a>0) a7
,[OO X2n+1e—ax2 dx = !
0 " 2gn+l

e gy = %\/%; [ x2e " dx = 4—1‘3\/%; [ x4e " dx = %\/% (18),




6.2 Equilibrium Solutions (continued)

Discussion: In constructing the eguilibrium solution f,, we must
also consider the self-consistency of the solution. For example, using
(11) and (12), we find that both (15) and (16) give p, = p,, + Pip =0
and J, = J,, +J;, = 0. Hence, the plasma produces no self fields and
the assumption of E, =B, =0 (which makes v,, v,, and v, constants
of the motion) is valid. However, if f, :%noé(vx)5(vy)[5(vZ —V,) +
o(v, —V)] in (15) is replace by fo, =nyo(vy)o(vy)o(v, —V,), then
Je; # 0 and there will be a self magnetic field, in which v, v, v, are
no longer constants of the motion. As a result, fg,(v,,v,,v,) does not
satisfy the Vlasov equation. In other words, the complete equilibrium
solution includes not just f,,, but also the self-consistent fields.

When the air in equilibrium [(16)] is disturbed, sound waves will be
generated. When a plasma in equilibrium is disturbed, a great variety
of waves may be generated. Some may even grow exponentially. These
are subjects of primary interest in plasma studies. 13

6.3 Electrostatic Waves
Rewrite the Vlasov-Maxwell equations:

L1, +Vv-Vf, + g (E+{vxB)-V,f, =0 (6.5)
V-B=0 (7)
V-E=4np (8)
VxE=-12B (9)
VxB=1SLE+4E] (10)
p(xt)=X0,[ f,(x,v,t)d’ (11)
where “
I t) =20, f, (x,v,t)vd’v (12)

Below, we present a kinetic treatment of the problem in Sec. 1.4.
The electrons now have a velocity spread and, as a result, we will find
that the electrostatic plasma oscillation becomes an electrostatic wave.14




6.3 Electrostatic Waves (continued)

At high frequencies (e.g. @ ~ w,,), the ions cannot respond fast
enough to play a significant role. So we assume that the ions form a
stationary background of uniform density n,. Since we consider only
electron dynamics, the species subscript "a" in f, will be dropped.

Equilibrium (Zero-Order) Solution :

Assume there is no field (including external field) at equilibrium.
then, v,,v,, and v, are constants of the motion and any fuction of v,
fo = fo(v) = fo(vy,Vvy,Vv,), is an equilibrium solution for the electrons,

ie. L (V)+V- Vi (V) —1f (B, +$VxB,)-V, fy(v) =0
— T3 T T

provided f,(v), which represents a uniform distribution in real space,
Is normalized to the ion density n, and it gives rise to zero current,
) {J f, (V)d3v =n, For clarity, all equilibrium quantities

5 are denoted by subscript "0". They (19)
I fo(v)vd®v=0 " |are treated as zero-order quantities.

so that there are no fields at equilibrium (E, = B, =0). 15

6.3 Electrostatic Waves (continued)
First-Order Solution (Linear Theory) of Electrostatic Waves
by the Normal-Mode Method :
Consider small deviations from the equilibrium solution in (19)
[f = f,(v), E, =B, =0] and specialize to waves without a magnetic
field (thus, VxE = -$-£B=0 = E=-Vg). We may then write

f(x,v,t) = f (V) + f,(x,v,t) For clarity, we denote all

_ small quantities by subscript
p(x,1) =4 (x,1) "1". They are treated as (20)
E(x,t) = E,(X,t) ==V (X,1) |first-order quantities.

Sub. (20) into the Vlasov equation:

24 4v-Vf —f(E+$vxB)-V,f =0, (6.5)
we find the zero-order terms vanish. Equating the first-order terms,
we obtain Lt +v-Vf =—f-V4,V, (21)

Sub. E, =-V¢ and p, = —ej f.d*v into the first-order field
equation, V-E, =47zp,, we obtain V24 =4re[ fd’v (22)6




6.3 Electrostatic Waves (continued)

O f4+v.-Vf=-£Vg .V § 21
Rewrite: { o me VoVl )
Vg =4ne| fdv (22)

Consider a normal mode (denoted by subscript "k™ ) by letting
f(x,v,t) = f, (v)e*22 7 [f, (v):asmall function of v]  (23)
{qﬁl (x,t) = g, ™21t [4,.: @ small constant] (24)
where it is understood that the LHS is given by the real part of the RHS.

The normal-mode analysis is general because a complete solution
can be expressed as a superposition of any number of normal modes.

(21), (23), and (24) give (—io+ik,V,) f (V) = — & ik, g, TV 8“0(")
k, ofy (v
= (V) = ot e i 25)
ot (v)
2
(22)-(25) give —kZgy = Ly g, ?xzv ddv (26)
YANA
a)ge 17

6.3 Electrostatic Waves (continued)

of (v)
Rewrite (26) k ¢lk - Cl)pe ny, k ¢1k —szz d v (26)
oy (V)
For ¢, #0, we musthave 1- “ée n% _":o Vf\—lzﬁ) 43y (27)

z
The v, and v, integrations in (27) may be immediately carried out

to result in a one-dimensional distribution function g,(v,) [which, by

(19), is normalized to 1]: go(v,) :ﬂ—loj fo(V)dv,dv, (28)
e d%lO(V) dispersion
*® _av _
Then, (27) becomes 1- k2 j_w VZ_ka; dv, =0 [relation } (29)

(29) has a singularity at v, = @/k,, which will be addressed later.
For now, we circumvent this difficulty by assuming v, <« w/k, for the

majority of electrons so that g,(v,) is negligibly small at v, = w/Kk,.
18




6.3 Electrostatic Waves (continued)

Since g, (v, —> t0) — 0, integrating (29) by parts gives

Ofe 1 _Go(Vz) @he 1= _Go(V2)

1--5 02l dv, =1—— 0L gy, = 2

Kz J—o (Vz—k—“;)2 V2 @? - (1_sz\0/2)2 v, =0 (6.25)

Note: The z-direction here is the x-direction in Nicholson. g,, k,,
and v, are, respectively, g, k, and u in Nicholson.

K\ «—
)

Expanding (1- and keeping terms up to second order in

2 oo
2V2., we obtain 15 [ g, (v,)[1+ 25202 + 3(K2¥2)]av, =0 (6.26)
A specific example : If the equilibrium soultion is Maxwellian:
B nO B 2 2
fo(V)—m@(p( T) (6.23)
then, using the formula in (18): [ e gy = lﬁ we obtain
90(v2) = 1 ] fo(V)dv vy = 2 —exp(= 2V2 ) (624),(30)

19

6.3 Electrostatic Waves (continued)

FV exp(-> VZ ) [(30)] and the formulae:
Te
e aXde_lfandj x2g=ax* dx_%1

[~ gv)av, =3 |7 v,g0(v,)dv, =0; [ vZgy(v,)dv, =vi, (31)
‘ﬁ/_—/
an odd function of v,

With g,(v,) =

[(18)], we obtain

Sub. (31) into 1—% [ gy, +2X202 1 3(K2¥2)?1qy, = 0 [(6.26)],

2\/2
we obtain 1- (szze -3 kzvg)ef%e =0, (6.27)

By assumption (30), @ > k,v+,. Thus, to lowest order, (6.27) gives
w ~ wp, and, to next order, we obtain the dispersion relation for the

Langmuw wave : (See Sec. 7.3 for a fluid treatment)

& = 0, +3K2VE, [ = 0 =twp, (1+3kAE)] (6.28)

20




6.4 Landau Contour
We now address the singularity encountered in (29). First, a review
of relevant definitions and theorems involving complex variables.
(Reference: Mathews and Walker, "Math. Methods of Phys.," 2nd ed.)
Laplace Transform: (M&W, Sec. 4.3)

LI#(t)] = [° #(t)ePdlt = §(p) |A tilde "~ on top of a symbol
initial value indicates a p-space gquantity.
—_—

LI¢'()] = pd(p) - 4t =0) (32)

initial value initial value
f_/%

LI¢" ()] = p°#(p)—p ¢(t=0) — ¢'(t=0)

Inverse Laplace transform: In%( pl
1 [ Potie 5 yapt poles |
Note: p, (> 0) is sufficiently large so that all —/ Re(p)
™ path of

the poles of q?(p) lie to the left of the path of i ] p-integration
p-integration. Hence, ¢(t) =0 if t <0. (why?) 21

6.4 Landau Contour (continued)

Analytic Function : (M&W, Appendix A)
A function f (z) in the complex z-plane (z = x + iy = re'?) is said
to be analytic at a point z if it has a derivative there and the derivative

f'(z)= A%w [h: a complex number] ez
is independent of the path by which h approaches 0. 0 0.y
The necessary and sufficient conditions for a function
W(z) =U (X, y)+iV(X,y)

: . oU _oV o __oU
to be analytic are: = oy and X (34)

Examples: W =z%, W =+/z, and W =e? are all analytic functions.
W =z* (z*: complex conjugate of z) is not an analytic function.

22




6.4 Landau Contour (continued)

Single-Valued Function : (M&W, Appendix A)
A function W (z) in the complex z-plane is single-valued if

W(z=re’)=W(z=re'®?") [n=12-] vy

. |W =2z? is a single-valued function. i
Examples: 12 - . : ()
W =z"“ is not a single-valued function. X
For W = z"/2, we may draw a branch cut from y
z =0 to o in the z-plane and forbid z to cross it. g
Then, W = z*? is single-valued in the z-plane 0 g X
where @ is restricted to the range 0< 8 < 27, i.e. branch cut

the @ value would have a 27 jump if z were to cross the branch cut.
Regular Function : (M&W, Appendix A)
A function is said to be regular in a region R if it is both analytic

and single-valued in R. Thus, W = z? is regular in the z-plane with an
arbitray @ and W = z"2 is regular in the z-plane with a branch cut. 53

6.4 Landau Contour (continued)

Cauchy’ Theorem : (M&W, Appendix A)

If a function f (z) is regular in a region R, then SBC f(z)dz =0,
where C is any closed path lying within R. Hence, the line integral
jziz f (z)dz is independent of the path of integration ﬂzz
from z, to z, if the path lies within region R. Z) .

Theorem of Residues: (M&W, Sec. 3.3 & Appendix A)

If f (z) is regular in a region R, except for a finite number of poles,

then, <j>c f (z)dz = 2713 residues inside C, (35)
where C is any closed path (in the counterclockwise direction) within R

the residue of a pole -1
and [of order n at z :Ioz0 } = (nil)!{(%)n [(z-2,)" f (Z)]}z=z0 (36)

7 i z) is reqular {
Example: 956?5—220'2 =2719(2,) [\?V(Itl‘)l no pgles. }
X

Principal Value Pf:gf—);zdx; lim U:‘“S@dxﬁb de} (37)

S>w X=X Xo+8 X=X




6.4 Landau Contour (continued)

Identity Theorem : (M&W, Appendix A)

If two functions are each regular in a region R, and having the
same values for all points within some subregion or for all points
along an arc of some curve within R, then the two functions are
identical everywhere in R. For example, in the the z-plane, e* is
the unique function in the z-plane which equals e* on the x-axis.

Analytic Continuation : (M&W, Appendix A) R

If f,(z) and f,(z) are analytic in regions R, and R,, @
respectively, and f, = f, in.a common region (or line), =1,
then f, (z) is the analytic continuation of f,(z) into R,. @
By identity theorem, it is the unique analytic continuation. R

Example 1: f, =1+z+2°+2°+---is analytic in the region |z <1.

f, =1/(1-z) is analytic everywhere except at the pole z =1. Since
f, = f, in the common region |z| <1, f, is the unique analytic
continuation of f; into the \z\ >1 region (except for the pole at z =1). 25

6.4 Landau Contour (continued)

Example 2: Consider the following 2 analytic functions of p:

ici -plane
_(” g(v,) [analytic in the upper ] Vz-Plane
i(P) _I—wdvz Vz—iIOZ/kz {half plane, Re(p) >0] | x<IP/k, (38)

(k, is real and positive.)

- béth of
£.(p)= dv g(v,) analytic in the |ntegrat|0n(39)
2 JL"2v,—ip/k; | entire p-plane v, -plane in/k
| e z
Landau] [ [~ g(v,) R ]
contour I—oodvz V,—ip/k;’ e(p)>0 |
. r s
© v . i
f P _oodvZ vzg—(ipzl)kz +7z|g(k—FZ)), Re(p)=0 |: \ (40)
definition : | ®
. g(v,) o Ip
8&'&%%‘23“ | av, Vooip/k; H2m9G), Re(P) <0 angau contour

Since f,(p) = f,(p) in the upper half plane, f,(p) is the (unique)

analytical continuation of f,(p) into the lower half plane. 26




6.4 Landau Contour (continued)
Electrostatic Waves by the Method of Laplace Transform:
(Ref. Krall & Trivelpiece, Secs.8.3and 8.4)

Sf+v- Vi =— £ V4.V, 1, (21)
Vg =4re| fdv (22)
Direct substitution of the nomal mode [(23), (24)] into (21) and
(22) results in a singularity in (29). Landau resolved this problem by

treating (21) and (22) as an initial value problem in t, while analyzing
a spatial Fourier component in z (denoted by subscript "k™).

‘ {fl(x,v,t) = flk(y,t)eikZZ [Eg/s ansguxmpt\i/(;rr]i,attri\gnwaveJ (41)
4 (x1) = iy ()™ Y | (42)
Sub. (41), (42) into (21), (22), we obtain

Return to (21) and (22): {

ofo(V)

2 (V1) +ikv, fy (v,1) = — ik, (1) ( (43)
—kZ g (1) = 4me[ £ (v,t)dv (44),,
6.4 Landau Contour (continued)
2 £ (v.t)+ikv, f, (v.t) =— & ik g (t) ToV) 43
Rewrite ot lk( ) 2%z lk( ) Me z¢lk() oV, ( )
—kZ gy (1) = 4re| f (v.t)d* (44)

Perform a Laplace transform on (43) and (44) [see (32)], we obtain

Py (V. D) = i (Vi = 0) kv, Fy (v, ) =~ f kol () 50 (49)
—kZdy (p) = 4re| fy (v, p)dv (46)
(v, p) = [ fye (v, t)e"dt (47)
where § e

A (p) = (D "'dt (48)

_ . of (V) 7

fy (Vt=0)—L ik, “0 ", (p)
@)= fp= e

p+ik,V; (49)

A note on notations: Subscripts "0" and "1" indicate, respectively,
zero-order and first-order quantities. Subscript "k" indicates a Fourier
component in z. Symbols with a " ~ " sign on top are p-space quantities.,s




6.4 Landau Contour (continued)

Sub. (49) into (46), we obtain
_azel” MCP

47zn0eJ‘ glk(Vz’t O)

K v

~ 3 —o  P+ik,V; K

¢1k ( p) - lrl%afa\sv) - , dg((j)(vz) (50)

K2[1 — a)pe L W (* dv,
[1 —0 p+ikZVZ d V] 1 kZZ J.—oo A _||(£ dVZ
z
9 (v,) = 5[ fo (V)dv, dv 4
z b X2y poles |
Inverse Laplace transform: of ¢, (p) | *

1 Pg+ioo ~ ot -—-—,fr R
By (33), du (=557 ", A(PeMdn, [ Ly pathof ) 52)

where p, (> 0) is a real number. In (50), k, is | | p-integration

real by assumption. If k, > 0, we see from (50) Im(v,)
that the pole (ip /k,) of the v, -integrals lies | iplk,
above the Re(v, ) axis. Hence, ¢, (p) & 4, (t) T 7 Re(v,)

are valid solutions without any singularity. path of v, - integration

29

6.4 Landau Contour (continued)

Rewrite (52): qk(t):%ﬂijipofl . (p)e”dp, (52)
47zn0e J’ O1k (Vg t= 0) Im(p)
~ S A
where () g gL 6
1 a;ge * dvZIID dv, ! Re(p)
£ Ve ¥ k> pathof
The mathematical solution (52) isinaform * ] p-integration
in which the physics (e.g. normal modes and Im(v,)
dispersion relation, etc.) is not transparent. We i! x< ip/‘fz Re(v,)
I I z

need more work to obtain a physics solution.
This will require a detour of the path of the
p-integration into the Re(p) <0 region, which implies that the pole at
ip/k, will cross the Re(v, ) axis, on which gz?lk(p) is singular. Thus, the
analytic region of ¢71k(p) is bounded by the Re(p) =0 line, and our first
step is to analytically continue ¢, (p) from Re(p) >0 into Re(p) <0. *

path of v'Z - integration




6.4 Landau Contour (continued)
Step 1: Analytic continuation : By the method in (38)-(40), we
may analytically continue 4, (p) from Re(p) > 0 into Re(p) <0 by
by changing the path of v, -integration in (50) from the straight line

[~ dv, to the Landau contour: [ dv,. Im(v,)
- | <ip/k,
472'n0 J‘ glk(Vz’t O) I — Re(v)
3 vy —'p ' original path of
Thus, ¢, (p) = p dgdo (Vz) v, - integration  (53)
e Vz
kIg I dv, v, -plane
k2 | xeip/k
Note that this path change will not affect the T Ksame as
value of gy, (1) = 5. [ & (P)e™dp in (52) e
because 4, (p) in (52) IS evaluated along the [:
Re(p) = p, (> 0) line, for which the Landau path | ©
is the same as the original v,-path (see figures). ~ Landau contour
6.4 Landau Contour (continued)
Write (53) as &, (p) = S(pks) Vz-plane (54)
<P =D(pk.)’ JaTEE,
t=0 )
S(pk,) =i 47zn0ej' glk(Vz, ) dv, ||
implying kz T
where ¢ |"source™ | dgé)(vz) 5
Wpe %
D(p.k,) =1-T [, -5, % 9)
v S(pk) Landau contour
p, z pt
then, (52) = g (t) = 5= jpo AR ) (56)
Since ¢1k(p) is now regular (analytic and T /L
poles |

single-valued) in the entire p-plane (except
at poles), we are free to deform the path of .
p-integration in (56) (by Cauchy's theorem), i’
provided the new path does not cross any pole.  * ]
Note: We now have 2 complex planes: p-plane and v, -plane, and
there are integrals along complex paths in both planes. 82

of ¢, (p) | *

(o | Re(p)
o path of

p-integration




6.4 Landau Contour (continued)

Step 2 : Deformation of the p-contour in (56): Im(p)

1 [P S(p.ks) ot |
1) = == _ d poles | (56)
¢1k_() 27 fpo_.oo D(p; k)& ap a0 )F
To bring out the physics in (56), we deform /| Re(p)

the p-contour as shown to the right. Cauchy's v R original
theorem requires the new path to encircle g p-contour
(rather than cross) the poles it encounters. %e‘;%rrﬁ?ggr
Assume that all the poles of ¢, (p) radius - oo~

[=S(p,k,)/ D(p,k,)] are at the (1st-order) .
: - growing

roots p; (j =1,2,-+) of D(p,k,) =0. Then, 1% mode

S(p.k;) residues ' .
(1) = Z[(p P )D(p k )] [at poles} @’jﬁd integrand

Im(p) .
p— po + o0

Re(p)

~e prt+|pit

|/ . 67

+ transient effects [integrations away from poles]
Path integrations away from the poles result in
@ (t) > 0 ast — oo because e oscillates rapidly with pil=Im(p)]. =3

6.4 Landau Contour (continued)

, d0)
. T Wpe \;
Normal modes: Rewrite: 1- k‘; IL " _le dv, =0 (55)
Define w =ip so that ¢, (t) ~ e~ and ¢(x, t) griottikz (5g)
o, - ) oo
then, (55) can be written 1— k2 dVZ dv, = ISPESION | 5g
L k relation
(corresponding Landau contour: —f———) —{—\ jLT z )
;>0
and (57) can be written as a sum of normal modes
S @,k -lojt | transient
() = Z[ (- D((a),kzz)) } o J +[effects } (60)
]

= aeo-3[ho-apgEig] [ o

where frequencies w;(=1ip;, j =1, 2,---) of the normal modes (in
gereral complex numbers) for a given k, can be found from (59). 34




6.4 Landau Contour (continued)

Summary of techniques and theorems used :

A Laplace transform brings us into the complex variable territory.
Cauchy's theorem is then used to deform the p-contour (left figure).
This requires the analytic continuation of ¢71k(p) to the entire p-plane,
which in turn leads to the Landau contour for the v, -integration
(right figure). With the deformed p-contour, we are able to apply the
residue theorem to extract the essential physics by isolating the normal
modes from the (non-essential) transient effects.

deformed ol
- Im(p) . v,-plane .
r%gi%gtguog A Potl® I xeiplky
[ >
growing |
[ 2 mode ——
1 Re(p) i
|
damped | integrand |
\\zgje ~eprt+ipit )
~ l b, —ice Landau contour -

6.4 Landau Contour (continued)

A Recipe for Handling Singularities in Normal-Mode Method :

Rewrite the solution [(29)] obtained by the normal-mode method
in Sec. 6.3 and the new solution [(59) and (61)] obtained by the
Laplace transform method in this section.

) dg,(vz) B : -
W 1~ dv, y comparison, we find that
1- k2 J—oo V7= kg dv, =0 |the Laplace-transform method (29)
z gives the additional information
e % of mode amplitude in terms of
, 3 L .
1- K _[L V,— % dv, =0 |the initial perturbation [see (61)]]  (59)

—iw;t+ik,z i
a0 =3Ho-en5ER ], ¢ G o

We find that (29) and (59) have the same form except for the path
of the v, -integration. This provides a simple recipe for removing the

singularity in (29): replacing jidvz with the Landau contour: fL dv,. .




6.4 Landau Contour (continued)

The above recipe is of general applicability; namely, we may
solve a variety of problems by the (simpler) normal-mode method,
then remove similar singularities in the solutions by replacing the
[~ dv, contour with the Laudau contour |, dv,.

A gquestion may arise as to whether the pole should remain above
or below the Landau contour. As just shown, this depends on whether

the original position of the pole % is above or below the Re(v, )-axis

_i 472'208‘[ g]_k (VZ 1t 0) V

|p z
in (50): ¢lk ( p) = dgo(vz) (50)
1= @oe [ dv, g,
kg 1y, -t O

before we deform the p-contour in (52): ¢, (t) 5 I &lk(p)eptdp

i.e. we determine the original position of p by setting Re(p) =p, > O

6.4 Landau Contour (continued)
Po+io ~
A (0= 577 [ (PP, (52
_j 47mOEJ' O1k (Vz 1= 0)
3 3 vV _l|(p z
A(P)= G, v2) (50

a)%e ©dy,
1 - kzz J‘_oo VZ _II(£ dVZ
z

where Re( p) = p, >0. We see, if k, >0, the original position of the
pole lies above the path of v, -integration, and should remain so

when the p-contour in (52) is deformed and the v, -contour in (50) is
changed to the Landau contour. If k, <0, then the original position
of the pole p lies below, and should remain below, the v, -contour.

Rewrite

If we convert the variable p to a new variable o = +ip so that
the solution has the form of a normal mode: exp(Fiat +ik,z), the
original position of the pole can be similarly determined as follows: 3s




€

6.4 Landau Contour (continued)

Recipe for Landau path in normal-mode analysis:

k, >0 (poles remain above v, -contour):

%y eV WLT—)V 62
_igt+ikyz | ] : + (62)

dependence: @ >0 @ =0 @, <0
k, <0 (poles remain below v, -contour) :

—]—ﬁ—f’Vz #I—-”_“B_?Vz ‘{’—TO"VZ (63)

w; >0 w; = ;

k, >0 (poles remain below v, -contour) :

(0]

RS Sy ‘fﬁ/ D>V %—ﬁ\v 64
giot-ik;z | 0o g0 (64)

dependence: @; >0 o; =
k, <0 (poles remain above v, -contour) :

—]-VXHVZ ‘{;‘\*:fa_’ Vz j"_dé_')vz (65)

@ >0 @ <0

6.5 Landau Damping

We have shown that a Laplace transform elegantly resolves the
singularty problem in normal-mode analysis. The recipe is in the
form of the Landau contour for the v, -integration [(62)-(65)].

Waves considered so far are electrostatic in nature (i.e. without
a B-field component). The Langmuir wave derived in Sec. 6.3 is
only one example of such waves. In this section, we reconsider the
Langmuir wave by properly accounting for the singularity through
the use of the Landau contour. This leads to a very important new
phenomenon known as Landau damping.

We will then go beyond the scope implied by the section title
with an examination of two types of electostatic instabilities, the
Landau growth and the two-stream instability, which occur in a
plasma with a non-Maxwellian electron distribution. We will also
consider a different type of (low-frequency) electrostatic wave, the
ion sound wave, which involves both the electrons and ions.




6.5 Landau Damping (continued)
Landau Damping in a Plasma with a Maxwellian g,(v,):

: . Whe 1 dgo(vz)
Rewrite (59): 1- k% jLVZ_ av; dv, =0, (59)

which was derived under the e 1@tz dependence. Thus, for k, >0,

the v, -contour is [see (62)] —l-———> #—\!r‘ﬁvz‘][‘—gg_"vz

w; >0

If @ — 0, we may take the path 7L—W—>v and erte (see
Nicholson, pp. 279- 284)

dgy(vz) dg (Vz) i 495(v2)
1 0\'z l 0 Y0\
| iz o, dv, =P[_ o2 v dv, +7i =g+ - (66)
If w/k, > v, we may expand the principal 9o(v,)
(0]
: dgy(vz) f b [
1 0
value term to obtalnj g, dv, ] o 4y
K K k d
j [1+502 + (F202)2 + (F202)3 1. ]dv, + 7i dggv . 60
1=Ky
6.5 Landau Damping (continued)
- : dgy(v2)
1 0\¥z
Rewrite (67): ILVZ_I?; av; dv,
k, * d K,z | KoV k,v d
A I R GO CAD SR +md30 (68)
Z kZ
9o(Vv,) = F
: V.
For a Maxwellian g, : e
01 Vi oy (69)
dv; mVTe ZV%e

we usej x2e @ gy = 1 V% and ij“e‘axzdx:—z\/; [(18)] to

: dg, (v k K . d
obtain J'vafﬁ, gé’\s Z)dv = (1) +3(5) V2, + d\g,;’
z

(70)

Sub. (70) into (59) and using (69), we obtain

2

-
a)pe © 1+ 3kZVTe) \/7kpea) 2k, -0 (71)

42




6.5 Landau Damping (continued)

Rewrite (71): 1_%(“3@5%@@%%2% ~0  (71)
iél_/ <I:T.
Let =, +iw and 4 <<1:> 2(1+|—)—2 w‘g(l 2i ')
Keeping terms up to flrst order, (71) gives o
e (1438 2 P O TR M L (1)

Ve
We may solve (72) by the method of iteration. To the lowest order,
(72) gives o, = wp,. To first order, the real part of (72) gives
2 kZZV%e

_ 2 3kZVTe
@y —a)pe(1+3 Fe ) = o = (l+ 2 e ) (73)

and the imaginary part of (72) gives
a)pe §
2

. 2k32
@ =— \/% G \Zg_ T~ [k, >0] (74)43

6.5 Landau Damping (continued)

The electron Debye length (4,,) can be written

2 _ KkTe _kTe me _ Vfe
Abe = 4rnge? ~ Me 4dzne? ~ whe (75)

Thus, (73) and (74) can be written

k2vz2
O = Ope (L+3— Te) = wpe(1+§k§z,§e)

wpe 1 (76)

W22 0] 272
——Fs 513 i, -~ VE i R
where @, and @, agree with (6.52) and (6.53) in Nicholson.
Discussion:
(i) (76) is derived under the g iottik,z dependence with k, > 0.
Hence, @ is a negative number and ¢ ~ e_‘w“t, which implies

that the wave is damped even though the plasma is assumed to be
collisionless. This is known as Landau damping.

44




6.5 Landau Damping (continued)

Rewrite (76):
2y/2
kzVTe

): a)pe(l+§k22/11%e)

a’pe 3 1

— W 2k2vTe_ Ope 2|<221[2,e

@ == §W/T3e \/7 8 k313,
(i) In the limit of T, =0, we have @, = w,, and @; =0. Thus,
(76) reduce to the (undamped) plasma oscillation of a cold plasma.

discussed in Sec. 1.4. This shows that the plasma temperature is
responsible for both the Landau damping and the change from an
oscillation phenomenon to a wave phenomenon.

(iii) Mathematically, contribution to e comes 9o (V,)

W, = a)pe(lJr§

3 (76)
2

from the residue of the pole at v, = w/k, in the Z&

v, -integration. Physically, this implies that k
Landau damping is due to resonant electrons L vV,
moving at the phase velocity («/k,) of the wave. 45

6.5 Landau Damping (continued)

Question : How will the result be changed if k, <0, while still
assuming the e 1@t +ikz2
Answer :

In this case, from (63), we use the contour —f——'irha V; instead of
—f——w——év Thus, the only change is to replace "+zi" in (66):

dependence?

[ oty g, 1 dgo(v) o dG(v2)
L VZ_kZ dVZ —00 Vz_kz dV de sza)/kz
with " —zi". This will result in the same expression for @,, but with
a sign change in o, i.e. go(v,)
2
Cl)pe _3 1 _3
772 2 P

o = \/7 2k22vTe 3 \/7 Wpe 2k2/1De k,
kZVTe kZ’iDe e T_ =

Since k, <0, a; is still a negative number and the wave will be
damped at the same rate as is expected from symmetry conSiderations‘.16




6.5 Landau Damping (continued)

Landau Growth in a Plasma with a Bump-in-Tail Distribution:

Consider a plasma whose electrons consist of 2 spatially uniform
components with densities n,, and n,, and equilibrium distributions
Joa (v,) and g, (v,) (see figure below). Assume that (1) ny, >n,,;
(2) 942 (v,) has a v,-spread of v, centered at v, =0; and (3) g,,(v,)
has a v, -spread of v, centered atv, =v, > vq,. Thus, g, (v,) looks
like a small "bump" in the "tail" portion of g, (v, ).

To be self-consistent, we assume further that the ion density is
equal to the total electron density, and the ions drift to the right with
a current equal and opposite to the electron current. Thus, there is
no electric or magnetic field at equilibrium.

Joa (Vz ) Vlb
v g ob (Vz )
Ta N v
0 Vp z 47

6.5 Landau Damping (continued)
Assuming e~ dependence with k, > 0 and treating each
component separately as before, we obtain the dispersion relation:

iot+ik,z

Wha 1 09pa(vz) a)%b 1 dggp(vz) _
-5 P a5 Iva—g; pdv, =0 (77)
(A) (B)
For term (A), we assume w/k, > v, (no resonant electrons). Thus,
0,4 (V,) = 5(v,). An integration by parts gives: Term (A) =kZ/»? (78)
Since g, (v,) < gy (V,), the real part of term (B) is negligible

compared with term (A). However, k&
we must keep the imaginary part of Joa (V2) z 0 (v)
term (B) because it determines ;. Via ,l/\ ob zv
H dgob(VZ) 0 Vb z
Thus, Term (B) = zi—g, _ (79)
Z lv,=wlk,
@2
(17-(19) give  1-e i % dg(é?/(zvm o (50)

|VZ =wlk, 48




6.5 Landau Damping (continued)

; . a)z a)pb dgob(VZ)| _
Rewrite (80).1— —7i K dv, |, =

v,=mlK,
Writing @ = @, +ie; and assuming % <1, we obtain by

0 (80)

expansion: a)z_ 2(1+| ')_ a)ﬁ(l 2i ') Then (80) gives
O = Wy, o, .dueto g,,; o, :dueto g,
o oz O dgy (v2))| _ 7 @ My dgy, (V)| (81)
2k vz |k, 2 KETea dvz |

(81) shows that the sign of @ depends on the sign of dg,, /dv,
atv, =w, /k,. Thus, @ >0 (Landau growth) if o, /k, falls on the
positive slope of g, and @, <0 (Landau damping) if o, /k, falls

on the negative slope of g ,. The k&[Landtahu}
Landau growth is our first example 9oa (V2) g gr?\’lv )
of unstable equilibrium solutions. Vra Job (V2

0 v, ~ vz oao

6.5 Landau Damping (continued)

A Quialitative Interpretation of Landau Damping and

Landau Growth:

with phase velocity w/k, is present in MY

the plasma. An electron moving with
velocity v, sees the wave at the Doppler-shifted frequency «':
o' =w-XK,\V, (82)
If ' =w—-k,v, =0 (i.e. electron velocity = phase velocity), the
electron experiences almost a DC electric field. In this field, it will
gain or lose energy for an extended period of time (~ 27/ ®'"). This
phenomenon is known as resonant interaction.

Assume that an electrostatic wave

Divide the electrons into — « aslow electron
| lect .oy KV, >0 — « a fast electron
slow electrons: @' = w—k,v, > Vo = ok,
fast electrons: o'=w-k,v, <0 AV

50




6.5 Landau Damping (continued)
For both slow and fast electrons, some
. ) — « aslow electron
will lose energy to the wave and some will  ____ | 5 fast electron
gain energy from the wave, depending on — Vg =alk,
the position of the electron relative to the /\/\/\/\/\/\/\/\/\/\/\/\/\/\/
phase of the wave.

If a slow electron loses energy in the resonant interaction, its v,
decreases. Hence, its o' (= @—k,v, > 0), which is a positive number
becomes greater. As a result, the time for sustained interaction (%)
becomes shorter. This will result in weaker resonance.

On the other hand, if a slow electron gains energy in the resonant
interaction, v, increases and o' becomes smaller. Hence, the time
for sustained interaction becomes longer (stronger resonance). This
give the electrons in the energy-gaining phase the advantage and, on
average, slow electrons gain energy from the wave.

Similarly, fast electrons will, on average, lose energy to wave.
51

6.5 Landau Damping (continued)

We have just concluded that, on average, slow electrons (relative
to the phase velocity of the wave) gain energy from the wave and
fast electrons lose energy to the wave. Thus, if the plasma contains
more slow electrons than fast electrons (i.e. a negative slope of g,
at wlk,, see left figure), the net effect is an energy transfer from the
wave to the electrons (Landau damping).

By similar argument, if the plasma contains more fast electrons
than slow electrons (see right figure), there will be a net energy
transfer from the electrons to the wave (Landau growth).

gO (Vz) W
. 9oa (V) k,
kz ; JA9a(v2)
Te z!( v, s 18 [ I >V,
more slow electrons more fast electrons

than fast electrons than slow electrons o




6.5 Landau Damping (continued)

Kinetic Treatment vs Fluid Treatment :

We have just considered a case in which details of the particle
distribution function determine whether a wave grows or damps.
On the other hand, fluid equations (derived in Sec. 1.4 of lecture
notes by a simple method) are formally derived from the Vlasov
equation (Sec. 7.2) by an integration procedure over the velocity
space, in which details of the distribution function are lost. Hence,
a fluid treatment will miss the Landau damping/growth (Sec. 7.3)
and other effects sensitive to the distribution function, but results
of fluid equations are implicit in kinetic equations.

Chapter 7 contains a fluid treatment of important plasma modes
and instabilities. Here, as a supplement to Ch. 6, we will cover some
of these topisc in the framework of the Vlasov equation.

Our first study of fluid modes is on the two-stream instability.

More will be considered in subsequent sections of this chapter.
53

6.5 Landau Damping (continued)
Two-Stream Instability I :

Consider again the bump-in-tail model for Landau growth (upper
figure). The dispersion relation obtained by the kinetic approach is
Wfa 1 dgpa(vz) a)sb 1 gy, (vz)

15k, b Jov :

B kzz L VZ _% dVZ dVZ o k22 Z_% dVZ

Suppose the velocity spreads (v,, V) of the 2 components vanish
(lower figure). We then have a situation where one component streams
through another component. Integrating (77) by parts and letting

v,=0 (77)

Joa =0(V,), 9., =0(v, —V,), wWe
o2 : , 0b a); b Joa (V2) Vlb )
. _ Wpa pb _ Jop (v,
obtain 1 T Ty 0 OvTa /\: 0 v (83)
This example shows that the b
the kinetic result [(77)] can be 5(v,) 5(v, —v,)
reduced to the fluid result [(83)] n v

in the proper limit. 0 Vp z 54




6.5 Landau Damping (continued)

The dispersion relation: 1—

a)Z (a) k Vb)z =0 [(83)] can be

. K,V
written (1 “’pa)(l by _ (84)
L, D, (w,k,)
Da(@, k;) Dy(w k) <« y
w
f pa
D, (w,k,)=1-—22 7
where s(le) 2 Db(wikz)k
kzvb 2 4 > z
D, (@.k;) = (1_7) Dpa 1V

(84) can be regarded as the coupling between the plasma mode
(D, =0) and the beam mode (D, = 0). The coupling is strongest
near the intersection of the two modes (see Figure). The intersecting

pointis at @ = w,, and k, = , Which are solutions of
b

D, (#,k;,)=0
D, (@,k,)=0 55

6.5 Landau Damping (continued)

: @h kv,
Rewrite (84): (1-—7)(1- o by =

(84)
To show that there is an instability, we will only look for the @
value atk, = @, oIV, 1.e. at the point of strongest interaction Letting

© = w5 + Ao, We get L~ wpa(—wpa) a)2 a)2 (1- zACf)) (85)

Sub. (85) and k, = a)pa/vb into (84) and keeping terms up to first
order in small quantities Aw and w,,,, we obtain

pb?

2 Ao A@? _ (02 nob)2
Wpa w%a a)pa

2inz

= Ao’ =% 3a(nb) :Aw—z},gwpa(nobﬁ 3, n=123

1

2

(86)

1_jB
2 2
%-Fig — Unstable mode

56




6.5 Landau Damping (continued)
From (86), we find the frequency of the unstable mode:

0= a+A6z):a)pa[1-l- 21,3( b3 (——‘H[)]

= 1-
- @, a)pa[ 24/3( ) ] (87)

o, = zﬁ a)pa(nOb)3 [growth rate]

Like the case of Landau growth (upper figure), the free energy
available in a non-Maxwellian plasma drives a two-stream instability
(lower figure) . However, in the latter
case, there are no electrons at exactly Eg\oa v,) Vl; )
the phase velocity of the wave. Thus, A

there is no singularity problem and a 0 a)r/kjvb
fluid treatment will also be adequate. 5(v,) I
(See Sec. 7.13 for a fluid treatment of @ Zl? (v, —Vv)

a slightly different two-stream model.) — vy V57

6.5 Landau Damping (continued)
Comparing the Landau growth rate in (81) and the two-stream

O = w%a Nob dQOb(VZ)|
H ! k2 nOa dVZ | /k
growth rate in (87): V=

; = 253 a)pa(nOb)3 [Two-stream instability]

[Landau growth]

we may show that @, [Landau growth] < @, [Two-stream instability].
This is because, in the Landau growth (upper figure), electrons

drifting slower than the wave absorb energy from the wave, whereas

in the two-stream instability (lower

figure), all electrons deliver energy Eg\oa (v,) V1o

to the wave because they all drift / Ao (v,)

faster than the wave.
As the g, spread increases from 0 S5(,)

to a large value, the fluid instability ,/k
will transition to a kinetic instability.

o,/ kZIVb

Zl ?‘(Vz - Vb )
Vi Vzss




6.5 Landau Damping (continued)

Two-Stream Instability 11 :
Consider two cold electron beams
of equal density n, streaming in an ion ;
neutralizing background in opposite = 0 v, v,
directions (v, and —v,). In (83), we
have already obtained the term for the forward stream:

oV, +V,) oV, = V)

a)gb
(0K, )2
By symmetry, the backward beam will have a similar form, with
v, replaced by —v,. Thus, following the same treatment leading to
(83), we obtain the dispersion relation:
Dg Dg

(k)2 (wtkpv)? 0 (88)
which gives a quadratic equation in ®:
o' = 2(w}, +kIVP)o® — 207 KIVE + vy =0 (89)

59

6.5 Landau Damping (continued)
Rewrite o —2(w?) +kIV))o® —20% KIV5 +kjvy =0 (89)
The solution for * as obtained from (89) is
1
2 2y,2 2 2y,2\2
w® = wp, HKV T (@5, + 4K V)2 (90)
It can be shown from (90) that for, ky > 2w?, /V¢, all value of

o are real (no instability). However, for k;' < 2a3, / V7, two values

of w will be a pair of complex conjugates and one of them gives rise
to an instability.

We may find the wave number (k;") for which the growth rate
maximizes by finding the value of k? for which dw? / dk? = 0. The

. max \/éa)pb . .
result is Kk, =+ TR which corresponds to a maximum growth
b

rate of & = @, /2. We will return to this problem again in Special

Topic Il in connection with a new subject: the absolute instability.




6.5 Landau Damping (continued)
lon-Acoustic Waves : (See Sec. 7.3 for a fluid treatment)
At low frequencies, the ion contribution to the dispersion relation
cannot be ignored. For low frequency electrostatic waves, we simply

add to (59) the ion term (the species subscript "e" or "i" is also added),
Wfe 1 dgee(vz) Wi 1 dg; o(Vz)
- kz JLv,—¢ SV dv, k2 J.LVz—k Idv dv, =0 (91)
Z z

Assume a Maxwellian distribution for both the electrons and ions:

/gio(vz) (92)
a)/kz geo(vz)

geo( ) FVTe eX p(_ 2VTe)

(93)

Gio(V,) = FvT exp

with vy, >> vq;. Assume further v;, > o /k, > v; (see figure) so that
there is negligible electron Landau damping (because dg,, / dv, — 0)
and negligible ion Landau damping (because @ /k, > v;;). We will
therefore neglect the imaginary part of both integrals in (91). 61

2VTI
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6.5 Landau Damplng (continued)

geo(VZ) dgeo(VZ)
For the electrons, sub. av, ——g0 mtoj v av, dv,
and neglect (<< Vy,) in the denomlnator we obtain
g0y 1-( ’
1 eo0
.[L Vz—E dv, av, ~ A I Gy (v, )dv; = V2T wfedd, (94)

. dg;
For the ion integral: J'LV — g:jov( Z)dvz, we assume > v, and
Z 1, z VA
kz

follow the same steps leading to (70). This gives the cold ion limit:

dgjo(vz) k
J.vaikz aov : dv N(EZ)Z (95)

2
Sub. (94) and (95) into (91), we obtain  1+L— ﬁD % ~0, (96)
which is the most basic form of the dispersion relation because ion
thermal effects and electron Landau damp have all been neglected.

From (96), we find o < @, i.e. this is indeed a low-frequency wave. e




6.5 Landau Damping (continued)
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1+ G P 0 (94)
ives 0% = KiAB 0 k2 kTe 4znge?2 k% KkTg
9 T kAR, T TKRAZ, AmneZ M LekgAg, Mh

N w=—KCs _ \ithc, = [Kle (95)

g, |

Physically, when the ions are perturbed, electrons tend to follow
the ions to shield their electric field, thereby reducing the restoring
forces on the ions. So the wave has a frequency lower than w,; (@
would be the ion oscillation frequency if the electrons were immobile).
However, the electrons cannot effectively shield the ion electric field
if A (wavelength) < A, (see Sec. 1.2). Thus, when 4 < Ay, ork, Ay,
>1, (94) shows that & will approach wy;.

Since the plasma motion is longitudinal and C; is similar to the
sound speed of a neutral gas, the wave is called an ion acoustic wave. ,

The dispersion relation




6.10 General Theory of Linear Vlasov Waves Part2

We have so far treated only electrostatic waves in the absence of
an external field. In this section, we lay the groundwork for a general
theory of linear waves, both electrostatic and electromagnetic, in an
infinite and uniform plasma. We assume that the plasma is immersed
in a uniform external magnetic field along the z-axis: B, = B,e,, but
there is no external electric field (E, =0).

Equilibrium (Zero-Order) Solution :

An equilibrium solution f,,(v) must satisfy the zero-order Vlasov

equation: £ £, (V) +V- Vi, (v) — g (E, + 3V Bye,)V,, fho(v) =0

ot a0
0 0 0
= (VxBye,)-Vy fro(v) =0 (101)

Thus, any function of the form f (v, ,v,) satisfies (101), provided
that the total charge and current densities of all species vanish so that
there is no net self field at equilibrium. This in turn makes v, and v,
constants of the motion in the only field present: Bye, . 1

6.10 General Theory of Linear Vlasov Waves (continued)

Examples of equilibrium solutions (normalized to n_,) are:

_ Ny V2 .
fo = 2r)23 exp( _2VT2) [Maxwellian] (102)
I L _ VE . sz . .
fo = 2 v exp( N 2VT2z) [bi-Maxwellian] ~ (103)
n
fO - zﬂi/l 5(VJ_ _VLo)é‘(Vz) (104)

In (103), the particles have two temperatures, v, and v,,. In
(104), all particles have the same v, (=Vv,,) and v, (=0). (104) is
approximately self-consistent if the self magnetic field due to the
gyrating particles is negligible.

First-Order Equations :

The linear properties of a plasma is contained in the dispersion
relation. To obtain the dispersion relation, we first linearize the set
of Vlasov/Maxwell equations by writing




6.10 General Theory of Linear Vlasov Waves (continued)

f,(x,v,t) =1, (v)+ f (X V1) (105)
E(x,t) = E;(x,1) (106)
_ As before, first-order
B(x,t)=Be, +B,(x.1) quantities are denoted (107)
p(x,t) = p(x1t) by subscript "1". (108)
J(x,t) =J,(x,t) (109)

Sub. (105)-(109) into the Vlasov/Maxwell equations. Zero-order
terms give the equilibrium solution Equating the first-order terms,

L i+ VvVl +mi(VxBe,) -V, Ty
= —m—‘;‘!(E1 +§v>< By)-V, f (110)
- |V:B;=0 (111)
we obtain V-E, =4, (112)
VxE, =~ cgtB (113)
VxB, =4 LE +9E, (114),
6.10 General Theory of Linear Vlasov Waves (continued)
P (xt) =30, [ f(x v,t)dy (115)
where “ .
(1) =20, [ fu(x, v, H)vd®y (116)

Note: In Nicholson (6.145)-(6.153), zero-order fields depends on
xand t. But from (6.154) on, E, =0 and B, = B,e,, as in our model.
Particle dynamics: These first-order equations (110)-(116) are

coupled. To examine the particle dynamics, we start from (110):

Lt +V Vg +mi (VxBe,) Y, Ty
:_m_a(El +EVX Bl)-VV faO (110)
The LHS is a total time derivative [% f_,]1along the zero-order
orbit because the acceleration force is qT“vx B.e,. Thus, (110) can

bewritten 41 =g (B +EvxB)) -V, f, (117)

4




6.10 General Theory of Linear Vlasov Waves (continued)
Rewrite (117): = fao(Vi,Vy)

Lt (V) = — g [Ey (D) + §VxBy (6 D]V, To(v),  (117)

where % follows the zero-order orbit of a particle, which we denote
by X'(t") and V'(t"). Under the conditions: X'(t'=t) =x and V'(t'=t) = v,
vy (t') =V, cos[$—Q,, (t'~1)]

V;/(t’) =V, Sin[¢_Qa (t’_t)] vy
v, (t) =v, ¢ «
WeNave 1 y(t') = x—g-sin[g - Q, (' ~t)] + gsin g (118)

Y'(t') = Y+ cos[p—Q, (t' ~t)] - 5—cos ¢
't =v,({t'-t)+z

where Q, = ?n“—fé’. (118) reduces to (1.25) if wes set ¢ (polar angle of
v )=nl2andt=0. Att'=t, (118) gives X' = x and v’ = v as required,

6.10 General Theory of Linear Vlasov Waves (continued)

Change the variable t in (117) to t" and note that x'(t'=t) = x and
V'(t"=t) = v. At'-integration of (117) from —oo to t gives

[ & X ), V)T = £y (v, - F X )V ()

t
= —%—Zj_w dt{E [X'(t"),t']+ % V() xB[X' ), T}V, fe (V)  (119)
We now consider a normal mode by assuming

E,(X,1) Ew

?l(x1tt) _ ?lk e—ia)t+ik~X (120)
1(%,1) 1k As before, subscript "k
fa6v,t) | f (V) denotes a normal mode.

where E,, ,B,, ,J;, are complex constants, and f_,, (v) is a complex
function of v. J;, can be expressed in terms f_,, (v) as

Iy =20, [ fuu (V)vdy (121)
Question: Why is p, (X,t) not included in (120)? (see note below) 6




6.10 General Theory of Linear Vlasov Waves (continued)

Sub. (120) into
f v, )= [X(), V()]
t
:—an% B dt’{El[x’(t'),t']+%v’(t’)>< B,[X'(t"),t'1}V, f (V) (119)
we obtain

falk (V)e—ia)t+ik-X _ falk [Vf(t!)]e—ia)t’+ik-x" ,

t'=—00

|=—iot—io(t’ —t) +ik X +ik- (X" -x)

Qo t ' 1, (et —iawt+ik-x '
= | GUIE, +3 V() <By e Yy Fao (V)

L t
— _r%_(;e—la)tﬂk-x I_OO dtI[Elk + % V!(tl) % Blk] . VV! fao (V,)
. e—ia)(t'—t)+ik~(X'-X) (122)

Note: In (122), the opertaor operates on f,_,(v") only.

6.10 General Theory of Linear Vlasov Waves (continued)
—iot+ik-x
We assume o, (= Imw) >0, then f_,, [V'(t")]e o
(122) becomes
—iwt+ik-x
f (Ve

L t
— _I%_ae—la)tﬂk.x J‘_w dt([Elk +%V'(t,) % Blk] . Vv! fao (V’)

o

OO:O and

g i@(t1)+ik-(x-X)

Factoring out the e "1 dependence, we obtain
t
foa (V) = —r?]_ZI_w AU[Ey, +£ V(1) xBy -V o (V)

NOte . e—iw(t’—t)+ik-(X'-X) (123)

(1) o (x,t) is not in (120) because, with the assumed e
dependence, p,, is implicitin J,, though the continuity equation:

—iot+ik-x

0 ) )
V-3+£=0 = ik-Jy —impy =0 = py =Fk-J;

8




6.10 General Theory of Linear Vlasov Waves (continued)

(i) Although (123) is derived under the assumption of o, >0,
the dispersion relation to be obtained from (123) can be analytically
continued to an arbitrary o by the use of Landau contour for the v, -
integral [see (135)]. The argument follows the treatment of Landau
damping.

(iii) v’ as a vector is a function of t". However, it is understood
that f_, (V') is a function of scalars v, and v,, both being constants
of the motion. Hence, in writing f_,(v’) in (119), (122), and (123),
v'is not displayed as a function of t'.

(iv) The method we employed to obtain (123) is called "method
of characteristics" or "integrating over unperturbed orbit".

6.10 General Theory of Linear Vlasov Waves (continued)

Field equation: From the linearized Maxwell equations:

VxE =-£4B, (113)
VxB, ={L2E +42), (114)
we obtain Vx(VxE)=-$2VxB =-1 L E -4223  (124)
El(x’t) =
For a normal mode: 1 | 11(())((:)) x ?i‘ Je""”'k'x (120)
fxv,t) [ fuv)

(113) and (114) give  kx(kKxE )+ E, =-422) (125
A note on notations: Subscripts "0" and "1" indicate, respectively,
zero and first order quantities. Subscript "k" indicates a normal mode.
Subscript "' indicates particle species.
(123) and (125) together with the orbit equations (118) form the
basis for our treatment of linear plasma waves in Secs. 6.11 and 6.12. 10




6-11 Linear Vlasov Waves in Unmagnetized Plasma

Rewrite (123): T, (V) = g [ dt[Ey +EV/(E)x By ]V, fo(V)
e i@(t-1)+ik-(x-X) (123)

Assume the absence of an external magnetic field (2, =0). Then,

V'(t") = v =const
11
(118) reduces to {x’(t’) V(1)

t i (t—t)+ik v (t'—
o (V) == (Byy + VB )V, f o (V)] dtle - 0k¥(=0 (126)
Again, assuming o, >0, we obtain from (126)

xBy )-Vy T,
f (V) = e (El“‘fv.(a,ikk) o) (127)

Note: (127) can be readily derived by setting B, =0 and sub. the
normal mode (120) into the linearized Vlasov equation (110):

Lt + V-V +mis (VxBe,) Yy f ==& (By +§VxB)) -V, f
but in the presence of B,e,, we must use (123) (see next section). 1

and (123) can be written

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

E B, )V
Rewrite f,y, (V) =g ( 1k+t\:>(<w1kk) V)V fao¥) (127)

Assume f_,(v) is an isotropic function, i.e. f,(v) = f_, (V).
Then, (vxB,,)-V, f,,(v) =0. Since there is no external magnetic
field and f_, (v) is isotropic, the plasma properties are also isotropic.
Without loss of generality, we assume k =k,e,. Thus, (127) becomes

E, .V,
foac (V) = qi —'—1|k(w k0</2§V) (128)

Sub. (128) into J,, = anj fo(V)vd *v [(121)], we obtain

2 By Vyf (V)
Iy =z-§r v—llk(wjk—jg)d% (129)

The field equation: k x (K xEy, ) + & By =—4212 3, [(125)]

may be written  k7E,,.e, — (k; _F) Ey =- 475;“’ Ju (130)




6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)
Electrostatic waves :

Rewrite T = %IV%&V (129)
K;Buges + (K — 4By — 4523, =0 (130)

For electrostatic waves, E,, [[k(=k,e,). So we set
Ey = Bt (131)

(129) then gives ao(v)

2
Ji =—Zi,9n—2Elkzj(vx +Vyey +V,E,)— d v (132)

In (132), f,, (V) = f,[(vi +Vy +v22)%] is an even function of v,
and v,. Hence, the x and y components vanish upon, respectively,
vy and v, integrations, and we have

ao(V)

- g2 z
=Yg Eye, j kvz dv (133),

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

zafao(V)
Rewrite J;, = Zl Elkzezja)—kzvzd v (133)
Defining g, (v,) :Taoj f,o(v)dv,dv, [as in (28)], we obtain
v, 9940 (v2)
Jix =—Z| aoqa Elkzez.[ Za,_d\zl\z,z v,
Writing = - (~1+ ), we have

ka

—_\i aqa dg,, (V)
‘Jlk_%:I ”f‘)a 1kz ZkI (1_60—ak)sz) d?’zZ Ve

The first term vanishes upon v, -integration because g,,,(v,) =0
at v, = foo. Thus,

, dggo(vz)
i Ny 005 v
Jlkzg._ 03 & Eucts I~ T T dv,, (134)

yA 14




6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

dgo(V2)
dv,

kz“¥z J_» VZ_kQ dv
z

Sub. E;, =E;,e, and J,, _Zl g0 e 7 i

0{

z

. . . 2 i
into the field equation:  k;Eye, — (k; —%)Ey =422 3, (130)
we obtain the dispersion relation for electrostatic waves:

dgaO(VZ)

a)pa dv _
jL 7 i dv, =0, (135)

where, by the recipe in (62), we have replaced f:o dv, with [ dv,.

In deriving (123) and (127), we have assumed o, > 0. With the
Landau contour, @ in (135) can have any value provided the pole
wlk, does not cross the Landau contour.

(135) agrees with the electrostatic disperson relations in Sec. 6.5
for the Langmuir wave, Landau damping/growth, two-stream insta-
bilities, and ion acoustic waves. 15

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

Discussion: Rewrite VxB; =¢-£E, +4%J, (114)
For the normal mode in (120), the RHS of (114) gives
$LE +427, = (F2E,, +4Z 3y, )e M (136)
) . dggo(V2)
Inserting J,, = Ziﬂ%‘&ﬁg Epe [ Vd#dvzeZ [(134)] and
a (04 0 kZ
E. = E.e; [(131)] into (136), we find do, . (Vz)
i 00z dv
—2Ey, +4T”Jlk __Elkzez + 47[2' 03 & Elkzez_[_oo ~,—a
dgaO(VZ)
_ s d
- e -SR] v} =0
z
=0 by (135)

This shows that, the displacement current and particle current
exactly cancel out. Hence, we have an electrostatic wave. 16




6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

Electromagnetic waves :

2 E, Vvl (v
Rewrite T = a %vad%\/ (129)
K7 Eyge, +(k; —L)E, —42e g, =0 (130)
For electromagnetic waves, E;, L k(=k,e,). So, without loss of
generality (because the plasma is isotropic), we set E,, = =Epyy (137)
Then, (129) and (130) give
8fozo(V)
. 3
Jy = %—I e Elkyj(vxeX +V,e, Ve
(k; —Z)Ey e, - 422, =0 (139)

f,,(v) is an even function of v,. Hence, the x-component of (138)
vanishes upon v, -integration. -3 f,,(v) is an odd function of v,.
y

Hence, the z-component of (138) vanishes upon v, -integration. .

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

We are then left with only the y component of (138):

> vy Fgolt)
Iy :%—i%—ZElkyey Jaro—dv (140)

Integrating (140) by parts of over v, yields

a2 o (V)
Ju=21my Elkyeyfw—ok il

Using the one- dlmenS|onaI equilibrium distribution function:
0o (V2) =ik [ T (V) D,

we may write (140) as ~ Jy =i nor‘ﬁj“ 18y | 00V )dv (141)

w—K,V,
Sub. (141) and Ey, = E;, €, into
—KEee, + (k2 -, —4e g, =0 (130)
H gaO( )
we obtain k? — +a)z o, [ 22 ey dv, =0 (142) .




6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)
2 g (Vz)
Rewrite K ——2+a)2a)pa | S -, =0 (142)
EM waves in a plasma have a phase velocity > ¢ [see (143) below].
Hence, we may assume @/k, > v, and neglect the the k,v, term in
the demonamitor of the integral in (142).

0
V2
J‘g;x_oé V) dV ~ a)Igao(Vz)de ~w
This results in the dispersion relation: @pe

w® =kc? + ? (143)

pe

where we have neglected the small ion contribution.
The @ vs k, plot (see figure) is similar to that of the waveguide.

There is a cutoff frequency @, below which EM waves can not

propagate. Short radio waves ( ~10 MHz) are hence reflected from

the ionosphere. This has been exploited for long-range broadcasting.

By comparison, the free space is non-dispersive with @ =K,c.

19

6-12 Linear Vlasov Waves in Magnetized Plasma
(Ref.: Krall and Trivelpiece, Sec. 8.10)

Dispersion Relation : We begin this section with a derivation of
the general dispersion relation for waves in an infinite, uniform, and
magnetized plasma on the basis of the following linearized equations

derived in Sec. 6.10 for a normal mode with e~k dependence:
f (V)= T‘;'ar CAEEy + V() x By ]V fhp (V)

_e—la)(t —t)+ik-(X'-X) (123)
kx(kxEy)+4E) =—4Zle g, (125)

where we have assumed a uniform external magnetic field B, = B, ,
and shown that the equilibrium distribution function in such a field is
f,o(v)= "1, (v, v,). Sothe plasma is isotropic in the X, y-dimensions,
but it is 3-dimensional anisotropic. Thus, we expect the conductivity

to be in the form of atensor 6: J,, =6 -E;;. 20




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

General form of the dispersion ralation:

Oxx Oxy Ox Elkx

I = (144)

x O

O 2x Gzy 7 Elkz

Without loss of generality (for a plasma isotropic in x, y), we let

k=k e, +k,e, (145)
Sub. (144) and (145) into the field equation:
kx(kxEy)+%Ey =—4Zle g, (125)

the X, y, z components are

kzc? k, k c '
A=+ 47” xx) 1kx T By + (& +4z “& 9x2)Eye =0
4a7)[ ! O-yx Tkx + (1 2 407)T : O-yy) 1ky 407)T I O-yz E1kz 0 (146)
k k,c2
(7 T 47“ zx) E1kx T 47“ o, E1ky + (1 47“ zz)Elkz - 21
6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
(146) can be written
_ Dxx ny sz E1kx
D-Ey =Dy Dy, Dy, Elky =0 or (147)
sz Dzy Dzz Elkz
[, k&2 i i k k,C Me ]
1-=5 +%GXX %ny La)zz + 4£ I Oxz ElkX
4Wﬂigyx 1- k;cZ +ﬂo-yy Z Oy Eyy | =0 (148)
k, k,c? k?c?
_la)—z + MO-zx Ll “w % 1-=—5 "2 +ﬂazz Elkz |
For (147) or (148) to be solvable, the determlnent of D must vanish:
. Dxx ny sz
D|=|p D, Dy|=0 (149)
sz I:)zy Dzz

(149) is the most comprehensive form of the dispersion relation. 22




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Particle dynamics: In (149), the conductivity tensor & is still
unknown. To obtain the specific expression of the dispersion relation,
we need to work on the equations for particle dynamics.

Define 7 =t —t' and rewrite (123) and (118) in terms of

0 ! !
fac (V) =~ [ de[Ey +§V/(1) xBy ]V oo (V)

vy () =, cos(¢~ 0, 7)

vy (7) =V, sin(¢ - Q,7) A
v, (z) =V, ¢ X
X'(r) = X—g\g—LSin(¢—Qar) +£\£—Lsin¢ (151)

y(2)=y +(\g—lacos(¢— Q,7) —g\;—;cosqﬁ

'(r)=v,7+12

23

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
Using k =k, e, +k,e, [(145)] and the orbit equations in (151),
we may write k-[X'(z) —x] =k [X'(z) - x]+k,[z'(r) — Z]

_%[sin(qﬁ Q1) =sing]+ k,v, 7

Tk X(r)x] _ e—i(w—kzvz)f +ik§—\j[8in(¢—ﬂar)—sin 4]

= e
. L oL FiXSING +is@
Using the Bessel function identity; e*'*S!" :s;_ Jg (e,
'kJ_VJ_ i _
e_l Qq sin(¢-Qq7) _ Z‘] ( k, J_) —|S(¢ —Q,7)
we obtain
ikivisin¢

e _Z‘JS’( ) |s¢

_  elor+ik{x(r)x] _ e_'(a’_kZVZ)”i éZL[Si”((ﬁ—QaT)—Sin(é]

—ZZ‘] ( J_VJ_)‘]S,( J_VJ_) —i(@—KyV;~5Qy )7 +i(s'—S)¢ (152)24




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
Sincef o (v') = f o (v],v;) and V| (=V,), v; (= v, ) are constants
of the motion, we have V. f (V') =V f (Vv ,v;)

v, /v
) g
V‘/g¢ st z
8f of
8v2 vV, +2V, 6—\2% (153)
Thus, By -V fo(V)=2(Ey, ex + Elky y + Eje®z)
of
( CZO V VZ Wa%oez)
af of
= 2(EyVx + Egy Vy) 5% + 2E1kZ ; a\‘;‘%o (154)

From (113) and (120), we obtain B1k = Ek x Ey, . Then,
vxBy =S Vx(kxEy)=&[(v-Ey )k—(K-V)Ey ]  (155)

25

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

(153) and (155) give . .
$xBy) Vy fug = IV Ey k= (k- VIEy ] (a2 v, +v; Fade,)
- %{[(v- Ey)(k-vi) = (k- v)(v, -y )]%0%0

+[(v-Eg kv, — (K- Vv, Elk]%og)}

= % {[(VX Elc T Vy E1ky +V; By, K, Vy

8f
= (k vy + KV ) (Ve Eqpey +Vy Elky)]
of
+[(Vx Epjey +Vy Ejy +VzEi kzvz —(k vy + kv, )V, By, ]—5\(7;}
of o
= Z[(—k;Vx By — K Vy By + K Vx By vy avz
of,,

+ (kzVx By + Kz Vy By =K Vx Elkz)VZ ] (156)

26




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Combining (154) and (156), we obtain
Vz

(Eu +£V/xBL) Vi fg = 2V X + 2V Y +2V} Z
_y, [0 4 ¢i-0u0)

—iv, [e'0 %) _ 0Dy L0y, 7 (157)

V. of of
X = E1kx ao + o (k Elkx kLElkz)( a\(;g.o B a\(/)%o)
LV of
where <Y = Elky Kz Elky( 8\7%0 —~ 8\750) (158)
8f
Z= Elkz 5\720

Note: (i) v,,V,, and v are constants of the motion, but v v,
and vy are time dependent.

(i) X, Y, and Z are functions of constants of the motion.

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Combining (152) and (157) gives
(E, +1\/ XBlk) v, Oe—la)r+lk-[x'(r)-x]
V X[e|(¢ QaT) +e |(¢ QaT)]zzJ Js,e |(a) kZVZ SQa)T‘Fl(S’ S)¢

s g
_iVLY[eI((b—Qar) A Q) 1y 5 JgJ e i(0—KzV;—8Qy ) 7+i(S'—S) ¢
S s

+2VZZ%§J JS,e I(a)_kZVZ_ng )Z’+|(S’—S)¢ (159)

el (#—207) - :
. —i(w—KzV;—SQ, ) r+i(S'—S) @

Write %%JSJS,{ —i(¢—QaT)}e 2Vz

e—i[a)—kZVZ—(S—l)Qa)]TH(S'—S+1)¢
=22 Jsdg 9 :
—I[a)—szZ—(S+l)Qa)]T+I(S’—S—1)¢

{n _ 1} S s
nos+l zi{j”+1j‘°"}e—i<w—szz—n9a>f+i(S’—“)¢ (160)
ns n-1vs
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Sub. (160) into (159), we obtain
(Ey + £V xBy) -V, f g0 7 KX
= %%[VLX (JnJrl + ‘]n—l) — iVJ_Y(‘]rH.]_ — ‘]n—l) +2v, 233 Py

o i(@keV2—nQy )7 i(5'—n)¢ (161)

the only factor that depends on =

Sub. (161) into f,y, (V) =~ [ de[Ey, +EV'() x By ]
. VV/ fao (V!)e—ia)7+ik'[X'(7)-X] (150)

and carrying out the z-integration, we obtain
Vi X (gt )1V Y (I3, 0) 12223, ] ei(sr_n)¢

f V)= qu -
alk ( ) Tﬂ;%% . i(o—k;v;—nQ,,) S (162)
This is Eg. (8.10.8) in Krall & Trivelpiece. Note that all Bessel
functions have the same argument: % 2
(04

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

The conductivity tensor: The perturbed current [(121)] can be written:
o0 2 o0
I = 20 [ fy (VA =2"q, [ vidv, [T dg[ dv,f (v)¥
First consider the x-component of J,, : |V. cosgey +V, singey +v,e,
o) 2 w© i i
i = 2 J, vidv, [ dg[” dvy £y (V) dv, (€7 +e)  (163)
24

By (144), J,,, can be expressed in terms of the conductivity tensor
(164)

as ik = Txx B + Oxy Bygy + 0x2 By
Then, oy is the coefficient of the sum of all E;, . terms in (163)
[which can be found from (162) and (158)]:
2 .0 27 0 i i
oo = S [Cvodv, [T dg]” dv, v, (€ +e)
(24

A 01KV, KV, O

S 1(—k;v;—nQY,)

> Iy +3,1)35€' M7 (165)
n 30




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Using the Bessel function identities:

{Jn_l( )+ 0.0 (x) =330 (x) (166)
In l(X)_‘]n+1( )=2Jp (X)

(B + %1(”w—ﬂfaa(ﬂw (167)

we may write  J_ .,

Sub. (167) into (165), we obtain

B qg{ o0 2 0 nv Q
—;m; . VLdViIo d¢j_wdvz E “

k vz) K,Vv, of

a\,z w 8v2 el (s-n+D)g | i(s—n-1)¢
Zn:z |(a)—kZVZ—nQa) Z J \Jsr|: +e }’
(168)

s
where we see that only the s’ =n +1 terms in the s sum will survive
the ¢-integration.
31
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Carrying out the ¢-integration in (168), we obtain

Oyy = Z Z”q“ ZJ.:VLdVLJ.i dv, W, g
2nQ,,
],

A0 (1- K,V, )+ kv, o0 |7 kv,
8V2 2 GV% ——
—L In(Jnoa + 3ni1)

1(w—kzv;—nQ,,) n n+

afozZO (1- ) K V7 afaZO
_ 27rq,§ an{ 2 8V @ aVz
_; My nJ. 2v dVI av, k2 I |(a)—kzvz—nQa)
k,v 81? 0
(—w>+ggﬁ
|(kzvz+n§2a—a))
(169)

-y a)g’“ zn:jgo 2v, dv, Ijo dv,

o

where f, = ﬂl— [hence _[ fod =1].
32




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

The general dispersion relation: Rewrite the dispersion relation:

B Dyx Dyy Dx
B =|Dyx Dy Dy
DZX DZ DZZ
K2c? | azi Ari KKz azi
1- a)z 5O T Oxy lwzz +°05 Oxz
: - :
= Blox 1- ka)g +ﬂ‘7yy Aoy, =0 (149)
K k.2 | azi Az K2c?  4zi
La)zz + 50O Hoy  1- é,z +%5 o
Sub. oy, from (169) into D, k %GXX, we obtain

Dyy =1- kZC 2”praZI 2v va. dv,

0{0( VZ)( k V ) k V 8fao( VZ)
N le ( J_VJ_) 8VJ_ aVz
kzvz+nQa—a)

(L70),

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

By similar method, we obtain the other elements of the dispersion
tensor. The complete results are (see Krall & Trivelpiece, pp. 405-406)

Dyx =1~ K C ZZ pa< ( L) a> (172)
Dy =_%ﬁ§;wga<n§i V1 g lVl)dj?lgk¢vf§/ziO)l)Z“> (172)
Dy, = kzzécz _277[;%:@50( <n§i V2 32( lVl)/\a> (173)
Dyx = —Dxy (174)
Dy, -1-HEEDE 2255 o, (IR s R, ) (79

_ 27 2 Vo A (kviQ,)
DyZ —T;Zn:a)p <VZVL‘]n( ) d(kLVL/Qa) Aa (176)
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

e Y 2 (e sty am

KV, dInck, v, Q)
Dy = -241 Zpra <VZVLJn( ) d?kl\L/anO)Z la> 4

k c2
D, =1- -t Z”ZZ pa< J2( l)A > (179)
_ I:(v Vz)
<F(VL,VZ) =j0 2v,dv, [ dv, kzvz+ﬁQZ—w (180)
af_o(Vi’Vz) KVy .\ kv, OF, 0(V,,V,)
where { Za = o L-=54) +54——~ o2 (181)
A, = af_ao(vé,vz) ng(ga ao(vé,v ) eV, )] (182)
V5 ovg avL
Question: The plasma is isotropic in x and y. Why are D,,, and
Dyy unequal? 35
6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
Waves Propagating Along Bye, (k =k.,e,): e,
The dispersion relation for waves propagating _.B
along B, = B,e, may be obtained by letting — ko e,
k, > 0in (171)-(179). €y

For a small argument, the Bessel functions J,(x) and J_ (x) can be

approximately written
X —0

In() =L &)"
m (183)
J_n(x)=—(—1)“an<x) AL
Forn=0and n=1, we have in the I|m|t X — 0,
JJ@zlJ(@zl,lAMz—§

300~ =%, 30 ~5, 3, ()~ -5

(184)
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
In (171)-(180), the argument of all Bessel functions is kgiz—\i:
Using (183) and (184), we find that in the limitk, — O,
Dy; = Dyx = I:)zy = I:)zy =0 (185)
and the other elements become

Dyx =1—@ Z”Z%a 4[<Vila >n=1 +<Vi%‘>n=—1} (186)
b, - Dy (187)
Dyy = =-2g Z a)pa 4 RVEZO‘ >n:1 - <VEZ“ >n:—1} (189)
D,, = 1—%2%,1 <V§ Aa)ig (1%9)
Thus, the disgersion relation (149) reduces to

Dyx Dyy 0

2 2
Dyx Dyy 0 | =Dz (DxxDyy = DyyDyx) = Dz; (Dix + Dyy) =0 (190)
0 0 Dy 37

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Rewrite the dispersion relation: ZZ(D2 + D2 y)=0 (190)

Several modes are contained in (190). To find these modes, we
assume, for simplicity, that the plasma is isotropic in all 3 dimensions,

e f o(vi,v;)="1,,(v)
Electrostatic waves:

One of the solutions of (190) is D,, =0, which, by (189), (180),
and (182), can be written
gavz a0

2 2 (o o0
1_%50)[30!!0 2VJ-dVJ-J._oodVZ szZ——(O =0

d
Vz=-0,0(V2)
o dv, 7¢
or 1—%§wgaj_wdvz kzZVz—a) =0, (191)

where g,,(v;) = [ 27v,dv, T (v, ,v,).
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

The integral in (191) can be written

v, dg.0(v2) [o—(—kv,)1 9 g o(v2)
jw dv dv; =L dv dv;
—00 z kZVZ - kz —00 z kZVZ -
gaO(VZ)
_1q® dvz 1 gy d_
B kZ j—oo dVZ kZVZ—a) kZ .[—oo dVZ dVZ 9s0 (VZ)
0
g 9a)
=% [~ dv, i k@ (192)
z dV gaO(VZ)
Sub. (192) into (191), we get 1— Z j dv, =2 —5—=0,

VA
which agrees with the electrostatic dispersion relation [(135)] for an

unmagnetized plasma. This is because electrostatic waves involve
particle motion along B, and hence are unaffected by the magnetic
field. The mode considered below will provide an opposite example. 39

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Electromagnetic waves: Rewrite D,, (Dfx + ny) =0  (190)
{DXX —iDyy =0 (193)

(190) gives two other solutions: Dy +iDyy =0 (194)

We recall that the dispersion relation ‘5‘ =0 [(149)] is based on

the condition for the solvability of the field equations in D - Ey =0
[(147)]. Fork, =0, we have Dy, = D;x = D;y =D,y =0, Dyy =D
and Dyx = —Dyy [see (187)]. Then, for solutions (193) and (194),

. Dyx ny Elkx Dyx ny E1kx
(147) gives { = =0 (195
Dy D E1ky —Dyy Dy E1ky

vy’

yx Hyy Y
D, E DywE, =0 E, = Dy E
xx Bk T Pxy By = L I T T Dty (196)
-D.E,,. +D.E,, =0 Dyx
Xy 1kx XX 1ky ElkX = D_Xy Elky
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

E, =-—XE
Rewrite: x DDXX 1y (196)
E, =oXE
1kx = Dyy —1ky

The following information about the modes in (193) and (194) can
be immediately learned from (196):

(1) The 2 equations in (196) are consistent only when D)%X = —D)%y,
or when (190) is satisfied. This is a specific example which shows the
dispersion relation as the condition for solvability of field equations.

We also find that (196) gives the relative amplitude (not the absolute

values) of the field components, as is typical of linear solutions.
(2) The fields in (196) are in the x-y plane. With k =k,e, and

E (x,t) = Elke_i“’”ikZz [see (120)], we find
: —iwt+ik
V-E (x.t) =ik,e, -E,e ' =0
Thus, the two solutions represent electromagnetic waves. a

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

. . . ) D
(3) Either of the equations in (196) gives E;,, = —D—X Eyjy- Hence,

{iE1ky for Dyy —iDyy =0 - _{Elk[ex—iey] (198)
1k —

E.,.=19 . i = .
—|E1ky for Dy +iDyy =0 E, [ex +|ey] (199)

1kx —

2 2 \1/2
where B, = (B}, +Epy )"

Thus, both waves are circularly polarized*. Without 4

loss of generality (explained later), we assume positive Elx

@ and B,. At any fixed position z, the field in (198) E, (e, T e et ik
rotates opposite to the gyration of electrons in Be, . a left cirgularly

In another view, it rotates in the direction of left-hand ~ Polarized
fingers if the thumb points to the direction of B,e,, c
hence the name "left circularly polarized wave". In X
contrast, (199) gives a "right circularly polarized . (6, To)e
wave" rotating in the same sense as the electrons. rigxht Cirf:mar,y
*Note: The circular polarization is due to Dyy = Dy, Polarized 2

ik +ik, z




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
Dyx —iDyy =0 (193)
Dyx +1Dyy =0 (194)
D,y and DXy are given by (186) and (188), respectively.

Turning to the dispersion relations: {

Dy Z“’pa Z [<Vi7(a >n=1 " <Vi7(“ >n=—1} (186)
O T
= Dyy —iDyy =1~ kw‘; ——Za)pa <VJ_Za> (Vi) 4
(Vi )y + (V)]
_1_ kczigz ~ZY W, <\,L Za>n_ , =0 (200)
Similarly, . ¢
Dyy +iDyy =1- k@g %ga)ga <viza>n=1=0 (201)

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Using (181) and (182) (200) and (201) can be written
KoV, KoV OF,
0(1-"z 2)_|_ za)z 6\7%0

a)_k2VZ_Qa
[left circularly polarized wave]

kaVz O o
@ o2
w—KzV;+C2,
[right circularly polarized wave]

2
a" Vidv, dv, =0 (202)

w? —kic? + 270y a)ﬁaj
(24

afazoa_kza\)/z )+
vidv, dv, =0 (203)

w® —kZc? + 270y a)f)af
a

These two dispersion relations in their present forms allow an
anisotropic f , [e.g. (103) and (104)], which may lead to an
instability (an example will be provided at the end of this section).

For an isotropic plasma, faO = faO(V 2 +v5) [e.g. (102)], we have
G af
oz 44




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
afOtO
2 2 oV,
[left C|rcularly polarized wave]
K 0
2 2 8V
w® —kic? + ﬂwz a)pa Jﬁ)_ T
[right circularly polarized wave]

vZdv dv, =0 (204)

vidv,dv, =0 (205)

Integrating by parts with respect to v, , we obtain

f0
2 2.2 2
o” —kjc —Zﬂw%:wpa [P v, v dv; =0 (206)
[left circularly polarlzed wave]
f0
2 1242 2
o° —k; —Zﬂw%:a)pa = Vv, Vv dv, =0 (207)
[right circularly polarized wave] 45

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

The basic properties of the waves can be most clearly seen in a
cold plasma. So, we let 0= ﬁd(w)&(vz) (208)

_ 00 2 o0
Note: [ F,od®v = vidv, [~ dg[ dv,f,q=1
Then, (206) and (207) give

2
0w
—kgc? -y a)—ng =0  [left circularly polarized]  (209)
(04

2
2.2 OO/ . : .
—kyc° - ; o, - 0  [right circularly polarized] (210)

As an exercise in Kinetic treatment of plasma waves, we have
gone through great length to arrive at the above dispersion relations
for a cold plasma. In fact, (209) and (210) can be readily derived
from the fluid equations [see Nicholson, Sec. 7.10; Krall &
Trivelpiece, Sec. 4.10].
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
Assume the plasma contains only one ion species of charge e and

B
mass m;. In all equations, Q, (= ¢ % =) carries the sign of g, and B,.

eB eB
To be more explicit, we define the notations: Q3 = ‘n‘, 2, Q= Tg

Then, (209) and (210) can be written

W2 a)z

w® —kic? _a’[a)+Q ] 0 [left circularly polarized] (211)
2 (02

w® —kic® —a)[a) o, w+Q ]=0 [right circularly polarized] (212)

Each equation can be put in the form of a 4th order polynomial in w.
So, for a given k,, there are 4 solutions for . However, with » changed
to —w, one equation become the other equation. Thus, a negaitive-a
solution of one equation is identical to a positive-@ solution of the other
equation. So there must be 2 positive-@ and 2 negative-@ solutions for
each equation. This results in a total of 4 independent solutions. 47

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Furthermore, with a change of the sign of B, the two equations
also reverse. So, without loss of generality [confirming the statement
following (199)], we may restrict our consideration to positive-o
solutions for a positive B, (i.e. B, is in the positive z direction).

The 4 independent, positive-@ solutions of (211) and (212) in a
positive B, are shown in Fig. 1 or 2 in four branches, ranging from
very low to very high frequencies. Various waves in these branches
will be classified below according to their frequency range.

(See Nlcholson Sec. 7.10 & 7.11; Krall & Trivelpiece, Sec. 4.10).

| Fig. 1 A
| Right Circularly Polarized Wave
@, | - /

2 ;—_ ~Left Circulorly Polarized Wave

.-‘

-Right Circularly Polorized Mode
~Left Circularly Polarized Mode

@

Electron Cyclotron Wave Qe

(right circularly polarized) “’1

— Electron Cvclotron Wave

(right circularly polarized)

" whistler

——— ——— lon Cyclotron Wave ey e = lon Cyclotron Wave

left circularly polarized ; ;
(.,. : yp ) 2 i wave (IEft Circularly polarized)

kz —S—Alfven Way : — K8

~Whistler
-

~Alfvén Wave




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
A.High frequency electromagnetic waves - Faraday rotation
For high frequency waves (@ > €).), the ion terms in (211) and
(212) can be neglected. Thus,
2

o —k;c”— +Q

=0 [left circularly polarized] (213)

w® —kZc? % =0 [right circularly polarized] ~ (214)
0—C),

The high frequency branches are plotted in the top two curves
in Figs. 1 and 2

Fig. 1
! g / Right Circularly Polarized Wave
/

0)2 I
~Left Circularly Polarized Wave

%Lﬂ// @,

—Right Circularly Polarized Mode
— Left Circularly Polarized Mode

Electron Cyclotron Wave Qe

(right circularly polarized) o

—— Electron Cyclotron Wave

< right circularly polarized

N\ whistler | --Whisll‘er( g yp )
o i Ion_ Cyclotron Wave * Q.

- (left circularly polarized)

_--_Alfvén Wave .

— — = =—— lon Cyclotron Wave

 ttvén wove. (Ieft cwcularly polarlzed)

R —k A nm —k,

z

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Setting k, =0, we find the cut-off frequencies of the two branches:

Q2 O
- Jol+ e s (215)

The 2 figures differ in plasma densities. When @, > \/_Qe, we
have ) > Q, (Fig. 1). When @, < \/_Qe, we have @ <Q, (Fig. 2).

As B, — 0 (2, — 0), the 2 branches coalesce with the same cutoff
frequency w,, and the same dispersion relation w® —kic? —a) =0,
consistent with (143).

| Flg 1 ’ Right Circulorly Polarized Wave

Wy |

ZL /‘ ~Left Circulorly Polarized Wave
wl Ex a)z
Electron Cyclotron Wave Q

(right circularly polarized) o '

—Right Circularly Polarized Mode
— Left Circularly Polarized Mode

Electron Cyclotron Wave

- =+ (right circularly polarized)
\whistler | ~Whistler
—_—————— lon Cyclotron Wave Q.

- I ft . larl lari d) — — = ——lon Cyclotron Wave
- eft circularly polarize
 attvdn Waye ( yp 2 hatisl W (Ieft C|rcularly polanzed)

e e e = ] kZ — i - K550




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

As shown in Figs. 1 and 2, at a given frequency, the right circularly
polarized wave has a greater phase velocity than the left ciucularly
polarized wave. Hence, if a linearly polarized wave is injected into
the plasma, it may be regarded as the superposition of a right circularly
polarized wave and a left circularly polarized wave of equal amplitude,
each traveling at a different phase velocity. The combined wave is still
linearly polarized but its E field (i.e. its polarization) will rotate as the
wave propagates. This is called the Faraday rotation and is exploited
for plasma density measurement because the degree of polarization
rotaion depends on the plasma density.

In an unmagnetized plasma, there is no electromagnetic wave
below the cutoff frequency w,,,. A magnetized plasma, however,
can support other branches of electromagnetic waves at frequencies
below the cutoff frequencyies of the top two branches, as discussed
below.

51

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
B. Intermediate frequency electromagnetic waves - whistler wave
and electron cyclotron wave

In the intermediate frequency range, we still have @ > Q., hence
(213) and (214) still apply. (213) has no other solution in this range.
(214) has a solution marked as "whistler" & "electron cyclotron wave"
in Figs. 1 and 2. The electron cyclotron wave can be exploited for
electron cyclotron resonance heating since it has the same frequency
as the electron cyclotron frequency and it rotates in the same sense as
the electrons.

: /
| FIg.1 _«
| " Right Circulorly Polarized Wave
7~

-7~ Left Circularly Polarized Wave

~Right Circularly Polarized Mode

— Left Circularly Polarized Mode

Electron Cyclotron Wave Qe -

(right circularly polarized) o

Electron Cyclotron Wave
(right circularly polarized)
~Whistler

“whistler |

o e e e e lon Cyclotron Wave + Q. |
- (left circularly polarized)

~S-Alfvén Wave

— — ——— lon Cyclotron Wave
” Altvén wave (IETECIrCularly polarized)

Kot #5 - - 752




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

For the whistler wave, the group velocity v, (= dw/ dk,) increases
as w increases. When a lightning stroke on earth generates a pluse of
EM waves containing many frequencies, the pulse may reach the
ionosphere and propagate along the earth magnetic field as a whistler
wave. Some the wave will eventually leave the ionosphere to impinge
on the earth, where it can be received by a radio and generate a sound
like that of a whistle, hence the name whistler wave. The radio signal
has a duration longer than the original pulse because components at
different frequenmes travel at differnet v, in the |onosphere

| Fig.1 ,
| Right Circulorly Polarized Wave
a)2 =

//“ ~Left Circularly Polarized Wave

—Right Circularly Polarized Mode
— Left Circularly Polarized Mode

Electron Cyclotron Wave Q

(right circularly polarized) o '

Electron Cyclotron Wave

(right circularly polarized)
"\ whistler

—_——— lon Cveclotron Wave Q; — — — = —— lon Cyclotron Wave

- (left circularly polarized) & tvin wove (1€ C|rcularly polarlzed)
ciibin, Lt L LU, L) L R AL e kZ - — = 3 253

~Whistler

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

C.Low frequency electromagnetic waves - Alfven wave and ion
cyclotron wave
As the frequency gets lower, the ions participate more and more.
At frequencies near or below Q;, the ions play a major role and we
must use (211) and (212). In the vicinity of €;, (211) gives the low-
frequency end of the whistler wave (slightly modified by the ions),
and (212) gives a new wave called the ion cyclotron wave.

—Right Circularly Polarized Mode
-Left Circularly Polarized Mode

Electron Cyclotron Wave Q

(right circularly polarized) o

—— Electron Cvclotron Wave

Ko (right circularly polarized)
“whistler

e e e e lon Cyclotron Wave Q.

~Whistler

— =— — =—— lon Cyclotron Wave

(Ieft circularly polarized)

L (left circularly polarized)
- e = kz

~—Alfvén Wave
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
When o <« Q;, we have

ol AR <) .>—1 ~q0-4) (216)
el el e\l el el
1 1 @ \- 1 )
O -5 ) - +g- (217)
el EI EI el el

Sub. (216) and (217) into either (211) or (212), we get the same
results (i.e the two low-frequency branches merge into one):

w2 a)z
w® —kic? +a)(—+—) 0, (218)
W?. W?.
Since — =P« P we neglect the electron term to get
00 <
) @y , 4z, 2 m2c?

w® —kic? + QZ =’ —kic? + 0 _m_e282 =0 (219)

arn OmiCZ

2 55
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Defining a speed V, (called the Alfven speed) in terms of B,
and the ion mass density p; = n;,;m, :

V, =20 (220)

Jamp;

we obtain from (219) the diepersion relation of the Alfven wave:

22 k2V2
w” —kZc a\)/g =0 or o'=—13A~
A 1+Vs/c

1 Flg 1 ,
| Right Circularly Polarized Wave
Wyl —

Leff Circularly Polarized Wave
o gz
1 @

— Electron Cyclotron Wave Q

(right circularly polarized) o

(221)

‘
4
Right Circularly Polarized Mode

Fig. 2

- Left Circularly Polarized Mode

T R— Elecir.cn Cyclotron Wave

ot (right circularly polarized)
‘whistler | ~Whistler
—————— lon Cyclotron Wave Q.

L7 (left circularly polarized)

I
—Alfven Wave

— — = =—— lon Cyclotron Wave

(Ieft C|rcularly polarized)

K, 3 756

—Alfvén Wave




6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

Physics of the Alfven wave : We first develop the useful concept of
magnetic pressure and magnetic tension. Using

the static law: V x B = 47 J (approximately —
applicable at very low frequencies), we may
express the magnetic force density f (force per ,
unit volume) entirely in terms of the B-field:
f=1JxB=,L(VxB)xB
a uniform

V(a-b)=(a-V)b+(b-V)a+ax(Vxb)+bx(Vxa) electron beam

B-field

i -
a solenoi lines

__yB%2,. 1.
= V8”+47T(B V)B
%/_/

N
magnetic pressure|| magnetic tension force density,
force density as if a curved B-field line

tended to become a straight line|

In regions where J =0, we have f =0, i.e. the

pressure and tension force densities cancel out, ~ Uniformeurrent 57
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Return to the Alfven wave. Since the two lower branches merge
at o < Q;, the left and right circularly polarized waves have the
same phase velocity. So a linearly polarized wave will remain linearly
polarized (no Faraday rotation). The figure below shows a linearly
polarized wave with B, in the y-direction and E, in the x-direction.

Since o <« €, Q,, the electron and ion behavior can be described
by their E; x B, drift motion (same speed and same direction). The
wave electric field E,, e, cause both the electrons and ions to drift in

1x™ X
the + y-direction, while the wave magnet z total B-field j"
field B, e, bends the external B, inthe ~ R-—\~~~~"7~ B, ,
Blel
direction of the plasma drift (see figure). [/~ /"7~ .

A quantitative analysis (Nicholson, _ Y
p. 163) shows that the field lines and Qé_lgearly pglailzed
the plasma move together as if the field 1= Bl By =By

lines were "frozen™ to the plasma (or the plasma frozen to field lines). s
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On the other hand, when the magnetic field lines are bent, there
is a "tension force density" on the plasma, which acts as a restoring
force to drive the plasma back so that the field lines (which are frozen
to the plasma) become straight. As the field lines are straightened, the
momentum of the plasma carries the field lines further back, thus
bending the field lines again, in the opposite direction. The tension
force then acts again to start another oscillation cycle.

Note that we have assumed k = k.e,; hence, all quantities vary

277
only with the z-variable. This implies  z total B-field j
that, at a given time, the E, e, xB, RN\ e
drift in the y-direction has the same b 130

speed at all points along y. Thus, Yy L
the drift motion will not compress/ .. Linearly polarized™
decompress the plasma to produce q <E1 = Enéi Bi=Byey
a density variation. The plasma remains uniform in the processes.
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Alternative derivation of the Alfven wave dispersion relation:
The E, x B drifts cause the plasma electron and ions to move in

the same direction with the same speed, hence generating no current.
However, there is another drift motion due to the time variation of E,,

which results in a polarization drift current given by (2.43) of Sec. 2.5:

_ pmC2 OB —iwpn,C2 —iwt+ik, z
Jp = BE ot B Eyne

—iwpmC2
or J, =—25F
k ? 1k
p BO

(223)
where p,, =n,,m, +n,,M, is the plasma mass density. Note that the
polarization drift speed is much greater for the ions than electrons.

J ok plays a critical role in the Alfven wave. It generates the wave
magnetic field B, and hence the magnetic tension force density. In

fact, we may derive the dispersion relation based on (223).
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—i C2
Sub. Jy =3, =—LME,, [(223)], Eyy =E e, andk =k,

B2
into the field equation de?ived earlier:
kx(kxEy)+% Ey =—4e g, (125)
we obtain
(k2 -2 47D 4”/%“’ M@y o =0,
which gives the same disper3|on relation as (221):
ot ket 0
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Waves propagating perpendicular to Bye, (k, =0):

Assume isotropic distribution, f_, = f_,(v2 +v2), we have

?\720 = %1‘\720 Then, with k, =0, we obtain from (173)-(178)
2 _
of
2 w2 N9y A 8\7[20
Dy __Wﬂzzn: Pa "k, Jo 2V dv .[ dv, nQ,-—ow Z (224)
< _
dJ of
| VNG v, 100) vE
® S ovs
Dy, =%§;w§a [, 2v.av, [ dv, rEQL = ) N (225)
J28fa0
27 2 NQy [ % —n ovt
D, = —szn:a)pa k—fjo 2v,dv, [_dv, 00— (226)
< _
VoV, dJn 8foco

Jn
: 0 0 d(k v, /Q) ) aVZ
__2rxl 2 SAARL LY
D,y =441 ;;“’pafo 2dele_L)OdvZ o T (227)62
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Factoring out the v, -integrals from (224) and (225), we have

of

D Vz 6\720
S, S = T (v)], =0
Factoring out the v, -mtegrals from (226) and (227), we have
afao —
a2 0
because f , is an even function of v,.

Thus, Dy, = Dy, = Dy = D,y and (147) reduces to

Do Dy 0| By
w O ||Ey |=0 (228)

0 0 D,, Elkz

yz1 Dyg J_ dv,

Dy, Dyy J'_OO dv, v,
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where . 2 i Qa , . -~
Dyy =1- ZZnQ — pajo 2v,dv, [ dv, JF ey (229)
1
i nQQ,Vv
ny:_DyX:_Zglgan “[y 2v.dv, [ dv, -
dJp af

-J

NI, 1) e (230
Dyy = k 2—”22 o _[OOZV dv, [~ dv,v?
Yy — (7] AR a 0 1YY oYz YL
PRl
aK.v, 10y)

5 ‘Z‘cj" (231)

2

02 o3 8f

D, =1- Zz 0, Pe j 2v,dv, [~ dv,vid7—= 8v2 (232)
In (229) (232), the argument of all Bessel functionsisk, v, /Q,,.

In the limit of a cold plasma (v, ,v, — 0), we only need to keep the

lowest-order, non-vanishing terms in the sum over n. 64
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- i _ 1 xyn. g __& 1)

Using (183): 1im 3y (x) = &, ()" limJ_n (x) = —-(5)".
we find that the lowest-order, non-vanishing terms for DXX are the
n =1 terms. Thus, the sum over n in Dyy is

n2Qa 2 8f
ZnQ _wIOZVdvI dv, N 8v2
L

_ O 0 02 kA2 oy
[Q —w Qam]f Zvid"ij- Nz 32 402 ov?

_ wa)pa V2 V2 8f
2w Jo Vi dVZ

2

+ < integration by parts over v’
a)a)pa

e 0] 2 e 0] —_
e el o
« foracold plasma: f,, = ﬁ&(vl)é(vz)
1L

2
0why
~ 27(?—0%2) (233)65
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Sub. (233) into (229), we obtain

a)
D =1-2 o (234)

Similarly, the Iowest-order, non-vanishing terms for Dy, Dy, and
D,y are also the n = £1 terms, and we obtain

i a)paQ
Duy =~Dyx =~ 2 5t (235)
k c? a)pa
Dyy =1-=> —;wz_% (236)

The lowest-order, non-vanishing term for D,, is the n =0 term,

202 2
which gives ~ D,, =1— k;g -y “;f;‘ (237)
(94
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DXX

-D

Dyy

(228) gives { D

Xy

E
1k
}{E X}:o and D, E;,,=0  (238)
yy J| "lky

Using (234)-(237), we find from (238) the dispersion relations:

T i T Y @2
Dyx Dyy _ — 0>~ a)(a)Z—QZ) _0 (239)
_ny Dyy iz w%aQa _ kfcz _Z a)pa
—~ (0*—%) w2
and D,, =1- kfjf - ; a;s’g‘ =0 (240)
Note: We have assumed k =k e, +k,e,
[(145)]. Thus, with k, =0, (239) and (240) ©x
apply to waves with k =k e, . This explains kT —B, e

why Dy, and Dy, are unequal, although the

system is isotropic in x and y 67
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Ordinary mode: (see Nicholson, Sec. 7.9 for a fluid treatment)
k2c2 DR

Rewrite D, =1-=5 —; w0 (240)
Since wpe > @y, We may neglect
the ion contribution and get @ pe y
o’ —k’c? —w}, =0 T (241)

This is the dispersion relation for the ordinary mode. The ordinary
mode is a pure electromagnetic mode, which propagates in a direction
perpendicular to B,e,, with the electric field parallel to B,e,. The
dispersion relation (241) has the same form as that of electromagnetic
waves in an unmagnetized plasma [see (143)] e

X

because the electron motion is along Bye, and kil g
hence is unaffected by the external magnetic EO e,
field. e T 1
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. . 2 _ A
General properties of modes in Dy, Dyy + ny =0

Dy, D
Rewrite the field equations: | Pl | 0 (238)
~Dyy Dy || Euky
and the dispersion relation: Dy, Dyy + Df(y =0 (242)

(238) gives the following information about the modes in (242):
(1) E; [=Ey&x +E1kyey] of these modes lies on the x-y plane.

- - - . ny
(2) Under (242), either equation in (238) gives E;,, =—5-E

Dux 1ky
From (239), we see that Dy, is real and
Dyy isimaginary. Thus, E; . and E; differ

ky
by a factor "i", implying E;, and E1y

are 90° out of phase while having

unequal amplitudes (‘Elx‘ * ‘Ely‘)’ ey~ An ellipse on the x-y plane
i.e. E, is elliptically polarized. traced by the E, vector 69
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(3) As shown in the figure, we have

By =Enex tEyyy
k=ke,

Thus, in general, these modes are
neither electrostatic (k x E; = 0) nor
electromagnetic (k- E; = 0), except e An e||i'b"s;\ on the x-y plane
at particular frequencies (such as traced by the E; vector
@ — o) or wave numbers (such as k, — o). Consider, for example,
the relative amplitude of E;,, and E;,  in the relation:

_ DXy E
E1kX ~ Dyx lky

If, for some w or k, , we have D,, — 0. Then, E; — E;, e, and
the mode becomes electrostatic. If, D,, — 0 at some @ ork , then
E, - Elkyey and the mode becomes electromagnetic. In either case,

E, also becomes linearly polarized. 70

ky
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Extraordinary mode: (see Nicholson, Sec. 7.9 for a fluid treatment)

At high frequencies, we may neglect the ion contribution. Then,

1 a)%e i w%eQe
. 2% ey,
(239) can be written o(@=0e) | _ 0, (243)
wpeQe 1- k2c? Whe
a)(a)2 Q3) @ @4

eB
where, as before, Qg = Tngco“ (243) gives

@3 k2c2 Ohe whes
( _paz)(l_ 2 _wz_pQ%) wz(ap)z Qz) =0 (244)

After some algebra, (244) can be written

k2c2 = (wz—w%e)z—wzﬂé — (a)Z_w%e)Z_a)ZQ% identical to (245)
+ @ —whe— Q8 0% —f, (7.178)
where o, , called the upper hybrid frequency, is defined as
why = \|ope + Q% (246)
6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
2_ 3. )2— 2003
Rewrite  k2c? _ (@ —ope)*—o (245)

?—ad,
This is the dispersion relation for the extraordinary mode. It has
two branches with the following limiting frequencies:

AQe =e[B, /(mgc)

[ 2 Q& _ Q.

L

Thus, as shown in the figure, 4
the frequency of the lower branch
goes from @, to m,,, and the o
frequency of the upper branch goes 2;61 extraordinary mode
from w, to infinity. Note that at >k,
o = @, , we have D,, =0. Hence, E; = E;, €, [see (238)] and the
wave is electrostatic (called upper hybrid resonance). As @ — o,

we have Dy, =0= E, = E &, and the wave is electromagnetic. 7

SN
.-~ ordinary mode
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Magnetosonic Wave: (see Nicholson, Sec. 7.12 for a fluid treatment)
a)pa i a)paQ
1- Za)z Q3 Z:a)(cz)z —Q%)
a)pa k2C2 _ w%a
IZ a)(a)Z—Q2 ) a)2 ; w?—Q2

At very low frequencies (o® < Q7), ions play a major role and we

Dyx ny

=0 (239)
Dyx Dyy|

Rewrite

must retain the ion terms in (239). Under the condition: »* < Q7

—1- 14y By, O, O
Dyx = Z _Qz~ +;Q—%_ Qz+Qz

kfc2 o k2c? Why kc2 @
Oy 1" " 2Lg ~t " "L e
2 2.
@4 @4 w @
bl ba _ ir e | iy
Dy = |Zw(w2 %) ~|Z all o, Qi] 0
=2 1O 73
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Thus, (239) gives Dy, Dy, = 0. Because Dy, >0, we have

202
py =1 kg)cz Q—F’z'—o (247)

(247) has a form identical to (219) if k, in (219) is replaced with k.
Thus, the solution is simply (221) with k, changed to k| :

D

2y, 2
2 :—ki\z/A . (248)
1+V,lc
where the Alfven speed V, is defined in (220) as
B0
Va \/% [ o =nigmi] (220)
(248) gives the dispersion relation for the €
magnetosonic wave. Because Dyy =0, it has an kT — B, 3
z

electric field E, = E,e,,. Hence, k- E; =0 and s B,
. . . ey E
the wave is electromagnetic with B, = Bje,. 1 74
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A physical picture: Like the low-frequency Alfven wave, particle
dynamics can be described by 2 types of drift motion. The E.e, x Bye,

drifts move the plasma in the + x-direction. Since E, (~ e™*-*) also
varies with x, the drift motion will compress/decompress the plasma,
resulting in a density variation along x. On the other hand, the wave
magnetic field B,e,, when superposed with Bye, will cause a similar
density variation of the magnetic field lines (see figure). The field
lines are again frozen to the plasma, similar to the Alfven wave.
However, the restoring force (thus the oscillation mechanism) is now
provided by the magnetic pressure force density: —VB?/8x [(222)].

As in the Alfven wave, there is €y
also a polarization drift current in the
y-direction due to the time variation —
of E;e, . This current generates the [ B

V) _—
wave magnetic field Be,, hence E{f/ B
. p——— |
the magnetic pressure. e

y _— 75
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Alternative derivation of the magnetosonic wave dispersion relation:
The polarization drift current is given by

3, = ,oerncc]Z:2 851 _ —ia)B,szc2 £, e itk
or J,= _'wB—'OOZT"CZ E (249)
Sub. Jy =3 =_ia)B—'OOZmCZE1k, Ex =Eiey, andk =k, e, into
the field equation:  kx(kxE,,) +C"—2E1k = —“’é#\llk (125)
we obtain (k? - ?22 4”'0”‘60 A )E ey =0
or o’ —k2c? +a\)/2(2: =0,

which gives the same dispersion relation as (248):
76
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Asymptotic behavior of the magnetosonic wave dispersion relation:

The dispersion relation for the magnetosonic wave:
? =kAVZIA+VZic?) (245)
is valid under the condition »® < Q7. It breaks down as k, — 0. To
find the behavior at k, — oo, we assume o® > QF and o* < Q}.

2 2 W2
_ Oba 4, Dpe pi
Then, Dy _1_%:@2—92 ~1+ S and from
a)pa i copaQ
Dy ny 1- Za)z —-Q2 Z:a)(a)z —Q2) 0 (239)
Dyx Dyy 'Z a’pa k2C2 _Z Ofe;
a)(a)Z—QZ) o 0?0 |
we find that, as k, — o« but o remains finite, we must have
O
Dy =1- . ol =1+ g o =0 (247)

which implies E; = ElxeX [see (238)]. Hence, the wave is electrostatic??

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

i a’%e wgz)i B
Rewrite 1 F TR 0 (247)
(247) gives
if w?, > 0?

2.2 l 2.02

pi==€ pi==€
@ = Bwhe . ohe =Q.Q; =iy, [fork, >x]  (248)
where Oy =2, (249)

is called the lower hybrid frequency.

This justifies the assumption:
o® > Qf and 0® < O}
we made in obtaining (248).
Finally, all the perpendicular

modes (k L B,) discussed so
far are summarized in the figure.

extraordinary mode

!
/ -
“.-ordinary mode

magnetosonic wave
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Discussion:

(i) We have covered a number of the most familiar modes in a
uniform plasma in the framework of the kinetic theory. These modes
are treated in Ch. 7 of Nicholson by the fluid theory. However, some
other familiar uniform-plasma modes have been left out, for example,
the Bernstein modes (Krall & Trivelpiece, Sec. 8.12.3).

(i) We have only considered waves either along or perpendicular
to B,e,. In practice, waves can exist at any angle to B,e, (Nicholson,
p. 165), with complicated expressions and mixed properties. The
general dispersion relation (149) can be the basis for a detailed study
of such uncovered uniform-plasma modes.

(iii) There are also modes which are not contained in (149). For
example, an inhomogeneous (equilibrium) distribution in density or
temperature introduces new modes, such as drift waves (Nicholson,
Sec. 7.14; Krall & Trivelpiece, Secs. 8-15 and 8.16). Plasmas in
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some devices (e.g. tokamaks) are futher complicated by a complex
magnetic field configuration. Such plasmas are usually the subjects
of research papers.

(iv) Modes considered in Sec. 6.12 are for a cold plasma. Basic
properties and the underlying physics are more clearly exhibited in
this limit. However, cold modes are stable because there is no free
energy to drive an instability. In the next topic, we will demonstrate
show how a mode can become unstable in an anisotropic plasma.

(v) The relativistic Valsov equation can be derived by the same
steps as in the derivation of the Vlasov equation in Sec. 6.1. For the
case we considered (E, =0,B, = B,e,), the relativistic factor y is
a constant of the motion in zero-order orbit equations. Hence, the
derivation of the relativistic dispersion relation takes exactly the same
steps which lead to (171)-(182). In Special Topis I, we will derive
the relativistic Vlasov equation and consider a relativistic instability. so
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A Slow-Wave Instability on the Electron Cyclotron Wave::
The dispersion relation for "right circularly polarized waves" is
aT010(]_ szz) k,V. of

— +0zY7 a0

ov2 @ @ vz
2 2.2 2
@ —K;C° + ZﬂwapaI =
o

oKV, +Q,
At high frequencies, we may neglect the ions Then, for a cold

vidv dv, =0 (203)

plasma, (203) reducesto ~ w” —kjc? —— Q =0, [Q, = e ‘ el (214)
which gives the 2 "right circularly polarized" branches in the figure.

Below, we will show that the | B0 o0 iize s
"eleCtron CyCIOtron Wave" portion | /;/‘""' Left Circularly Polarized Mode
of the lower branch can be o, e/

I . . ra
destabilized by an anisotropy in e[~ — Electron Cyclotron Wove
. . L. . . Ohe ~ (right circularly polarized)

velocity distribution, resulting ~Whistler
. . . - ir _ — =—=—=—lon Cyclotron Wave
in a velocity-space instability. ~ tvén wove (IEft circularly polarized)

Y4
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For an anisotropic plasma, we cannot use (214), but must go back
to (203). Again, assume high frequency and neglect the ions. (203)

afeO(]_ sz)+ z\)/268f\/e0
- 2 12,2 2 7 3 _
gives o° —k;c* +2row j kv, 1, vidv, dv, =0 (250)

pe

The integral | can be written |

afeo 1— sz) K, aTeO
v, @ 0,
! :%Im deldVZ +%Iw—v dv, dv,
kv, - «{integration by parts|
— j feo(l— )V dV dV J. a) eo 3dV dv
) o-ky —Q (—k,v,—Q )7 '+

Now, assume feo YR v o(v, — lo)é(vz), [see (104)] (251)

which represents a uniform dlstribution of electrons in random-phase
gyrational motion, with v, =v , and v, =0 for all electrons. 82
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k2v2
P Y ATy
Then, [ +55 =9 )2] (252)
Sub. (252) into (250) we obtaln the dispersion relation:
k2y2
o~ pe[ 2 (wzéo)z] 0, (253)
which reduces to (214) asv,, — O. : frequency

The two right circularly polarized branches 2 18l fastwave
are plotted for @, =10Q, and v , =0.2c. The St ]

P _
top figure plots @, (wave frequency) vs k. °f 7 slowwave
The upper branch is a fast wave (o, / k, > c), PV

while the lower branch is a slow wave (o, /k,  **Tgrowth rate
< ). The bottom figure plots @, (growthrate) .
vs k,. We see that the slow wave is destabilized 3 o010
by the gyrational particles, which feed energy o005

065 70 15 20 2
to the wave through cyclotron resonances. T el

T=—_

™~
|
1
1
i slow-wave
I
I
I
)
|
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