
CHAPTER 6: Vlasov Equation

6 1 Introduction

Part 1

6.1 Introduction
     
     The distribution function ( , , ) gives the particle density of  a 
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     A kinetic equation describes the time evolution of  ( , , ). The 

kinet
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ic theories in Chs. 3-5 derive various forms of kinetic equations. 
In most cases, however, the plasma behavior can be described by an , , p y
approximate kinetic equation, called the Vlasov equation, which 

simply neglects the complications caused by collisions.
By ignoring collisions we may start out without the knowledge of     By ignoring collisions, we may start out without the knowledge of

Chs. 3-5 and proceed directly to the derivation of the Vlasov equation
(also called the collisionless Boltzmann equation). 1

     As shown in Sec. 2.9, a collision can 
result in an change of two colliding particles' velocities andabrupt

The Vlasov Equation :
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result in an  change of two colliding particles  velocities and
their  escape from a small element in the -  space, which
con

abrupt
instant x v

tains the colliding particles before the collision.
However if collisions are neglected (valid on a time scale the     However, if collisions are neglected (valid on a time scale the

collision time, see Sec. 1.6), particles in an element at position  in
the -  sp


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x v ace will wander in continuous curves to
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position  (see figure). Thus, the total number in the
element is conserved, and ( , , ) obeys an equation
of continuity, which takes the form (see next page):
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                ( , , ) [ ( , , )( , )] 0                        (1)
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,     To show that ( , , ) [ ( , , )( , )] 0 [(1)] implies
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conservation of particles, we integrate it over  
an arbitrary volume  enclosed by surface 
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where ( ) is the total number of particles in ,  ( , , )( , ) is the
6-dimensional "particle flux" in the - space,  is a 6-dimensional
diffe

 N t V f t
d

x v x  v
x v s

6 6rential surface area of  , with a direction normal to  pointingS S

6

outward. Thus, (2) states that the rate of increase (decrease) of the 
total number of particles in  equals the partcle flux into (ouV 6t of) .V
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,In (1), [ ( , , )( , )]           
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      Thus, [ ( , , )( , )] ( )
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, [ ( , , )( , )] ( )

and (1) becomes    ( ) 0,         (6.5)

which is the Vlasov equation.
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The Valsov equation ( ) 0 (6 5)      qf f f

Physical Interpretation of the Vlasov Equation :

v + E v B
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1

     The Valsov equation ( ) 0  (6.5)

can be written                                                         ( )

      

 

m ct
q
m c

f f fx vv + E v B

v E v B 
( ) 0 (5)     d d df t f f fx vx v                 ( , , ) 0,                    (5)

where  is the total time derivative of . The total time derivative

(also called a convective derivative) follows the orbi

     tdt dt dt
df
dt

f t f f f

f

x vx v

t* of a particle in(also called a convective derivative) follows the orbit  of a particle in 
the -  space. It evaluates the variation of  due to the change of the 
particle position in the -  space as well as the explicit time variation 
of Thus (6 5) or (5) can be in

f

f

x v
x v

terpreted as: Along a particle's orbitof . Thus, (6.5) or (5) can be inf terpreted as: Along a particle s orbit
in the -  space, the particle density ( , , ) remains unchanged.
     *In the 6-dimensional -  space, particles at a point ( , ) have the
same velociy Hence

f tx v x v
x v x v

v the orbit of a particle is also the orbit of ansame velociy . Hence, v the orbit of  a particle is also the orbit of  an
infinistesimal element containing the particle. In the 3-dimensional 

-space, by contrast, particles at a point  have a range of  velocities. x x 5

     This interpretation is consistent with the fact that the sum of

(3) and (4) gives ( ) 0 (6)         x v x v =
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,(3) and (4) gives         ( , ) 0,                (6)

i.e. the 6-dimensional divergence of  the 6-dimensional "vel

      x v x vx  v x v =

ocity" 
( , ) vanishes. This implies that a collisionless 

l i i ibl H th l f
 x  v v

plasma is incompressible. Hence, the volume of  

an elements (thus the particle density ) will be 
unchanged as it moves from  to .

f
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     A s :

 Consider the simple case of  a group of  particles initially located in
a square in the -  space (area ,  lower figure). If  the particles arex

pecific example

x v A

 

    
q p ( , g ) p

force free, those on the upper edge wi
x

ll move at the fastest (equal and
constant) speed, while those on the lower edge 
move at the slowest (equal and constant) speed

xv
Bmove at the slowest (equal and constant) speed. 

Then, some time later, the square will become a 
parallelogram of  the same area (area ,  lower figure).B x

A

B
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     Effect of collisions :
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     If there are collisions, they will cause a variation of  at the 

symbolic rate of ( ) , which should be added to (6.5) to 

give

 
 collt

f

f

1

give
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      We now have the following set 
of self consistent coupled particle and field equations:

Complete Set of Equations :

6.1 Introduction (continued)

1

of self-consistent, coupled particle and field equations: 
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     Each particle species, denoted by the subscript " ", is governed
by a separate Valsov equation, and  carries the sign of the charge.


q
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    As shown in (5), General Form of Equilibrium Solutions :

6.2 Equilibrium Solutions

the Vlasov equation can be written as a total time derivative:  

              ( , , ) 0,                       (5)
     d d d
tdt dt dtf t f f fv

x vx v

dwhere  follows the orbit of a particle whose position and velocity

at time  is  and , respectively. Thus, any fuction of constants of the
motion along the orbit of the particle, ( , , ),  is a i i

d
dt
t

C C t
x v

x v solution ofi i

1 2the Vlasov equation, i.e.  ( , ...) 0,

because, by the definition of constant of the motion,


 

i

i

i

dCfd
Cdt dtf C C

, y ,

                  0.

    The equilibrium solutio


     i

i i i
dC d d

tdt dt dtC C Cv
x v

n (denoted by subscript "0") of interest to q

0 0 1 2

( y p )
us is a steady-state solution formed of constants of the motion that do
not depend explicitly on , i.e. ( , ...) with ( , ). i it f f C C C C x v
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1 If 0 and are constants of the motion  v v v
Examples of Constants of the Motion :

B E

6.2 Equilibrium Solutions (continued)

0 0

0 0 0

    1. If 0, ,  ,  and  are constants of the motion.

     2. If 0, .,  ,  are constants of the motion.
     3. The motion of a ch



 
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x y z

zz

v v v

B const v v

B E

E B e
arged particle (mass  and charge ) in EM

fi ld ( t d b t ti l d ) i d b L '
m q

A
Goldstein, Poole, & Safko, "Classical Mechanics," 3rd ed., p. 21

fields (represented by potentials  and ) is governed by Lagrange's 
equation: [ ]

             

A

,  1, 2, 3                                                     (13) 
  

d
dt

L L
q q i (13)   qd
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 is a position coordinate.
where 

 [ : Lagrangian; : particle velocity]

 

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i

i idt q q
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c
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See Goldstein, Poole, & 
Safko, Sec. 1.5.

     In cylindrical co


2 2 2 2 2

ordinates, we have ( , , ), ( , , ), 

, and . If the fields  and 

i d d f (13) i 0 H
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Examples of Equilibrium Solutions:

In contrast to the Boltzmann equation which has only one

6.2 Equilibrium Solutions (continued)

In contrast to the Boltzmann equation, which has only one
equilibrium solution (the Maxwellian distribution), the Vlasov
equation has an infinite number of possible equilibrium solutions.
But they exist on a time scale short compared with the collision timeBut they exist on a time scale short compared with the collision time.

The choice of the equilibrium solution depends on how the
plasma is formed. For example, if we inject two counter streaming
l f l i d i li i b k delectrons of velocity v0 ez and v0 ez into a neutralizing background

of cold ions, we have the following equilibrium solutions for the
electrons and ions (of equal density n0):

0 0 0

0 0

0
1
2 ( ) ( )[ ( ) ( )] 

                  (15)
( ) ( ) ( )  

   

  

    




x y z z

x y z

e

i

f n v v v v v v

f n v v v

which correctly represent the electron/ion distributions on a time
scale short compared with the collision time.
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     Given sufficient time, collisions will first randomize electron
velocities and eventually equalize electron and ion temperatures

6.2 Equilibrium Solutions (continued)

velocities and eventually equalize electron and ion temperatures.
The fianl state will be an equilibrium solution in the form of the
M

03/2 2 2

axwellian distribution for both the electrons and ions:
nm mv v0

0 0
3/2

3/2 3

2 2
22 2 (2 ) 2

       ( ) ( ) exp( ) exp( )            (16)

where  /   is the thermal speed,  is the same for both
i

    

T

T T

nm mv v
kT kT v v

f v n

v kT m T
f th l t d f th i I (16)species

3
0 0

0 0

,  for the electrons and  for the ions. In (16),
  has been normalized to give a uniform particle density of  

in -space [ ( ) ].

 
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e im m m m
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2

1
2 135 (2 1)
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
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x dx
Useful formulae
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22 1 !
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  





 




 n ax n
a

x dxe
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0 0 0 2
2 4
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31 1
2 4 8
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   

 
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
ax ax ax
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a
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e e e
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0     : In constructing the equilibrium solution , we must 
also consider the self-consistency of the solution. For example, using

Discussion f
6.2 Equilibrium Solutions (continued)

0 0

also consider the self consistency of the solution. For example, using 
(11) and (12), we find that both (15) and (16) give   e 0

0 0 0

0 
and 0. Hence, the plasma produces no self fields and  
the assumption of 0 (which makes and constants

 
 

 

i

e i

v v v
J = J J

E B

0 0

0 0

0
1
2

the assumption of 0 (which makes , ,  and  constants 

of the motion) is valid. However, if ( ) ( )[ ( )  
 

  
x y z

x y ze

v v v

f n v v v v

E B

0 0 00( )] in (15) is replace by  ( ) ( ) ( ),  then     zz x yev v f n v v v v

0

0 and there will be a self magnetic field, in which ,  ,  are 

no longer constants of the motion. As a result, ( , , ) does

 x y z

x y z

ez

e

J v v v

f v v v  not 

satisfy the Vlasov equation In other words the complete equilibrium

0

satisfy the Vlasov equation. In other words, the complete equilibrium 
solution includes not just , but also the self-consistent fields.
     When the air in equilibrium [(16)] is disturbed, soun

f
d waves will be

generated When a plasma in equilibrium is disturbed a great varietygenerated. When a plasma in equilibrium is disturbed, a great variety
of waves may be generated. Some may even grow exponentially. These
are subjects of primary interest in plasma studies. 13

6.3 Electrostatic Waves
     Rewrite the Vlasov-Maxwell equations:  

1( ) 0                (6.5)

0                                                                      (7)

  

       

 

q
m ct f f fvv E v B

B






            4          E

1

                                                          (8) 

                                                           (9) 
   c tE B





 41                                                  

  c ctB E J

3

(10)

( , ) ( , , )                                       (11) 



 
  t q f t d vx x v

3
where  

( , ) ( , , )                                     (12)

Below we present a kinetic treatmen

 


 










t q f t d vJ x x v v

t of the problem in Sec 1 4     Below, we present a kinetic treatment of the problem in Sec. 1.4.
The electrons now have a velocity spread and, as a result, we will find
that the electrostatic plasma oscillation becomes an electrostatic wave.14



     At high frequencies (e.g. ~ ), the ions cannot respond fast
enough to play a significant role. So we assume that the ions form a

pe 
6.3 Electrostatic Waves (continued)

0

enough to play a significant role. So we assume that the ions form a 
 background of uniform density . Since we consider ostationary n nly

electron dynamics, the species subscript " " in  will be dropped.
-

f
Equilibrium (Zero Order) Solution :     -   

     Assume there is no field (including external field) at equilibrium.
then, , ,  andyxv v

Equilibrium (Zero Order) Solution : 

  are constants of the motion and any fuction of ,
( ) ( ) is an eq ilibri m sol tion for the electrons

zv
f f f

v

 

0 0 0

0 0 0 0 0

0 000

1

( ) ( , , ),  is an equilibrium solution for the electrons,

i.e.         ( ) ( ) ( ) ( ) 0  

x y z

e
e

m ct

f f f v v v

f f f


 

      v

v

v v v E v B v

provided f0

0
3

0 0

( ),  which represents a uniform distribution in real space,
is normalized to the ion density  and it gives rise to zero current, 

( )  
i

n

f d v n 



v

v
(19)

For clarity, all equilibrium quantities 
0 0

3
0

( )
i.e.                                  

( ) 0 

f

f d v

 


 v v

0 0

                                     (19)

so that there are no fields at equilibrium ( 0). E B

are denoted by subscript "0". They  
are treated as zero-order quantities.
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     -
-

First Order Solution (Linear Theory) of Electrostatic Waves
by the Normal Mode Method :

6.3 Electrostatic Waves (continued)

0 0 0

 
     Consider small deviations from the equilibrium solution in (19)
[ ( ),  0] and specialize to wavef f  

by the Normal Mode Method :

v E B
1

s without a magnetic 

fi ld (th 0 ) W th it  E B E

0 1

1

1field (thus, 0  ). We may then write

( , , ) ( ) ( , , )
   ( , ) ( , )                                                    (20

c t
f t f f t

t t



 


    

 
 


E = B E = 

x v v x v
x x )

For clarity, we denote all
small quantities by subscript 
"1" They are treated as

1 1( , ) ( , ) ( , )t t t   E x E x x

0
1

     Sub. (20) into the Vlasov equation: 

( ) 0 (6 5)ef f f      v E v B

1 . They are treated as
first-order quantities.

                   ( ) 0,                    (6.5)

we find the zero-order terms vanish. Equating the first-order terms,

we obtain        

em ct f f f       vv E v B

1 1 1 0                               (21)
e

e
mt f f f

      vv
3

1 1 1 1
2 3

1 1 1 1

     Sub.  and  into the first-order field 

equation, 4 , we obtain      4                (22)

e f d v

e f d v

 
  

   
   




E

E 16



1 1 1 0

2 3

                                   (21)
     Rewrite: 




      



e

e
mt f f fvv

6.3 Electrostatic Waves (continued)

2 3
1 14                                                       (22)

     Consider a normal mode (denoted by subsc

 

  e f d v

ript " " ) by letting 

( ) ( ) [ ( ) : a small function of ] (23)  z
k k

ik z i t

k

f t f e fx v v v v1

1

1 1

1 1

( , , ) ( )  [ ( ) : a small function of ]      (23)
        

( , )           [ : a small constant]                   (24)

where it is understood 

  

 



z

k k

k k
ik z i t

f t f e f

t e

x v v v v

x

that the LHS is given by the real part of the RHS.
     The normal-mode analysis is general because a complete solution
can be expressed as a superposition of any number of normal modes.

     (21),  (23), 0
1 1

( ) and (24) give  ( ) ( )  
   z z zk k
fe

mi ik v f ik vv( ), ( 3),

0

1 1

1 1

0

( )

(

a d ( ) g ve ( ) ( )

                  ( )                                     (25)

 








 

z z ze z

z
e zz z

k k

k k

vm

fe
m vk v

f

k

i ik v f ik

f
v

v

v

v
)

0

0

2

1 1

0
2 2 14     (22)-(25) give  



  


pe

z e zk kn
n e

mk k 3                   (26)

 z

z z

v
k v d v

17

3

0
2 2 1

( )

R it (26) (26)z

f
vk k d 




v

6.3 Electrostatic Waves (continued)

3

0

3

0

1 1

1

2

2

2 2 1

1
( )

     Rewrite (26) :                          (26)

     For 0,  we must have      1                 (27)pe

z pe
z

z z

z

zk k

k

n

n

v
k v

f
v

v d vk

k k d v







  










 

  


v

01 2, ( )

     The  and  integr

zk

x y

z
zk

n vk

v v


 

0

ations in (27) may be immediately carried out

to result in a one-dimensional distribution function ( ) [which, by zg v

0

0

0 0
1

( ) [ , y

(19), is normalized to 1]:       ( ) ( )                   (28)

z

z x yn

g

g v f dv dv  v

0
2

( )
dispersion

dg
dv   

v

     Th 2
dispersionen, (27) becomes  1 0      (29)
relation

     (29) has a singularity at / , which will be addressed later. 

pe
z

z z

z

z z
zk

dvdv
vk

v k








 
     





For now, we circumvent this difficulty by as

0

suming /  for the

majority of electrons so that ( ) is negligibly small at / .
z z

z z z

v k

g v v k





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0

2 2( ) ( )

     Since ( ) 0,  integrating (29) by parts giveszg v  

6.3 Electrostatic Waves (continued)

0 0
222

2 2

2( )
1

( ) ( )
(1 )

            1 0       (6.25) 

     : The -direction here is the -direction in 

z z
pe pe z

z

z
z zz

z
k vdv dv

k

g v g v
vk

Note z x







  

  
   

0Nicholson. ,  ,zg k0

2

2

, ,
and are, respectively, , ,  and  in Nicholson. 

     Expanding (1 )  and keeping terms up to second order in

 
z

z

z zk v

g
v g k u




02
2

2
1 2we obtain  1 ( ) 3( ) 0   (6.2,  [ ]z z

pez z z z z z dv
k v k vg vk v
 


     6)

     :  If the equilibrium soultion is Maxwellian:A specific example





0
0

2 2 2

23/2 3 2
                       ( ) exp( )                      (6.23)

then, using the formula in (18):

(2 )
x y z

TeTe

v v v
v

f
n

v
 

 v

2 1
2 , we obtainax

adxe    then, using the formula in (18): 
0

0 00

2

2

2

22
1

, we obtain

          ( ) ( ) exp( )          (6.24), (30)1
z x y

TeTe

z

a
v
vn

dx

g v f dv dv
v

e

  


v
19

0

2

222
     With ( ) exp( )  [(30)] and the formulae:1

z
TeTe

zv
v

g v
v 

6.3 Electrostatic Waves (continued)

0 0

0 0 0

2 2

22

2

0

1 1
2 4

( )

 and  [(18)], we obtain

    ( ) 1;    ( ) ;      (31)

 

z z z z z Tez z z

ax ax

g dv dv v

a aa

v v g v dv

dx x dx

v g v

e e  

  

  

  

 

  0 0 0 ( )( ) ; ( ) ; ( )

   
z z z z z Tez z zg gg

    

02
2

2
1 2

                         an odd function of 

     Sub. (31) into 1 ( ) 3( ) 0 [(6.26)],[ ]z

z

z
pe z z z z dv

k v k vg v

v

 




    02

2 4

2 2 2 2

( ) ( ) ( ) [( )],

we obtain                        1 3 0,                       

[ ]z z

pe z peTe

g

k v

 
 
 



  



   (6.27)

B ti (30) Th t l t d (6 27) ik     By assumption (30), . Thus, to lowest order, (6.27) gives

and, to next order, we obtain the dispersion relation for the

Langmuir wave :  (See Sec. 7.3 for a fluid treatment)

 
z Te

pe

k v
 



g ( )

    2 2 2 2 2 23
2               3  [ (1 )]           6.28)(pe z pe zTe Tek v k v        
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     We now address the singularity encountered in (29). First, a review
f l t d fi iti d th i l i l i bl

6.4 Landau Contour

of relevant definitions and theorems involving complex variables.
(Reference: Mathews and Walker, "Math. Methods of Phys.," 2nd ed.)
      (M&W, Sec. 4.3)Laplace Transform :

0
initial value

[ ( )] ( )

     [ ( )] ( ) ( 0)           

( ) 

  

   

    

 




ptL t p

L t p p t

t e dt

                    (32)

A tilde " " on top of a symbol
indicates a -space quantity.p



Im( )p

2

initial value initial value
[ ( )] ( ) ( )

[ ( )] ( ) ( 0) ( 0)

  

   



      


 


p p

L t p p p t t

( )

:Inverse Laplace transform
  poles 
of ( ) p

Re( )p

0

0

0

1
2

     :

         ( )                                                     (33)

: ( 0) is sufficiently large so that a

( )  
 



 p i pt
p ii

Inverse Laplace transform

t

Note p

p e dp

ll
   path of 
-integrationp

p
0

0     : ( 0) is sufficiently large so that aNote p ll

the poles of ( ) lie to the left of the path of 
-integration. Hence, ( ) 0 if 0. ( h )w y?


  

 p
p t t 21

      (M&W, Appendix A) 
i

Analytic Function :

6.4 Landau Contour (continued)

     A function ( ) in the complex -plane ( ) is said
to be analytic at a point  if it has a derivative there and the derivative

( ) lim

  

 

if z z z x iy re
z

f z ( ) ( ) [ : a complex number] f z h f z h
y

       ( ) lim



h

f z
0

[ : a complex number]

is independent of the path by which  approaches 0.

     The necessary and sufficient conditions for a function 

 h h

h x

zr


0

                       ( ) ( , ) ( , )

to be analy

 W z U x y iV x y

tic are:      and                         (34)   
     U V V U
x y x y

2     : ,  ,  and  are all analytic functions.
*  ( *:  complex conjugate of ) is not an analytic function.

  


zExamples W z W z W e
W z z z
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     -  (M&W, Appendix A)

A function ( ) in the complex plane is single valued ifW z z

Single Valued Function :

6.4 Landau Contour (continued)

2

( 2 )

     A function ( ) in the complex -plane is single-valued if

                 ( ) ( ) [ 1, 2, ]

is a single-valued  

     



i ni

W z z

W z re W z re n

W z
E l

function. 


y

zrs s g e v ued
     : 

W
Examples 1/ 2

1/ 2

u c o .
is not a single-valued function.

     For , we may draw a branch cut from  
0 t i th l d f bid t it

 

 



W z

W z y

x
r


0

1/ 2

0 to  in the -plane and forbid  to cross it. 

Then,  is single-valued in the -plane  
wher

 


z z z

W z z
e  is restricted to the range 0 2 ,  i.e.   

x

zr


branch cut
0

the  value would have a 2  jump if  were to cross the branch cut.

      (M&W, Appendix A)

     A function is said to be regular in a region 

  z

Regular Function :

 if it is both analytic Rg g
2

1/ 2

y

and single-valued in . Thus, is regular in the -plane with an
arbitray  and is regular in the -plane with a branch cut.

 
 




R W z z
W z z 23

( )

(M&W, Appendix A) 

If a function ( ) is regular in a region then 0 f z dz

     

f z R

Cauchy' Theorem : 
6.4 Landau Contour (continued)

2

1
 

( )

( )

     If a function ( ) is regular in a region , then 0,

where  is any closed path lying within . Hence, the line integral

is independent







z

z

c
f z dz

f z dz

f z R

C R

 of the path of integration y
2z

1
z

1 2from  to  if the path lies within region .

      (M&W, Sec. 3.3 & Appendix A)
If ( ) is regular in a region except for a finite number of pol

z z R

f z R
Theorem of Residues :

es

x1z

     If ( ) is regular in a region , except for a finite number of polf z R

( )

es,

then,                2 residues inside ,                         (35)

where  is any closed path (in the  direction) within 

 c
f z dz i C

C counterclockwise R
 

0

the residue of a poleand  of order  at n z z 0

0

0

11
( 1)!

( )

( ) ( )  (36)

( ) is regular: 2 ( )
i h l

( ) [ ]{ }






     
    

nn
z z

dz

d
n dz

g z

z z f z

g zExample ig z
y

 z

0

0 00

0

0

0

( ) ( )( )
lim

     : 2 ( )  
with no poles.

     








   

   
 
   



a xa

c

b x bg x g x
x x x xdx dx

g x
x x dx

dz

P

z zExample ig z

Principal Value : (37)

x
0z
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(M&W, Appendix A)
If two functions are each regular in a region and having the

     
R

Identity Theorem :
6.4 Landau Contour (continued)

     If two functions are each regular in a region , and having the 
same values for all points within some subregion or for all points
along an arc of some curv

R

e within , then the two functions are 
identical everywhere in For example in the the plane isz

R
R z eidentical everywhere in . For example, in the the -plane,  is

the unique function in the -plane which equals  on the -axis.

 (M&

x
R z e

z e x

     Analytic Continuation : W, Appendix A)
If ( ) d ( ) l ti i i df f R R ( )f

1R

1 2 1 2

1 2

2 1 2

     If ( ) and ( ) are analytic in regions  and ,
respectively, and   in a common region (or line),
then ( ) is the analytic continuation of ( ) into .


f z f z R R

f f
f z f z R

1( )f z

2( )f z
1 2  f f

By identity theor

1

2

2 3

em, it is the  analytic continuation.

     :  1 is analytic in the region 1.
1/(1 ) is analytic everywhere except at the pole 1. Since

     
  


unique

Example 1 f z z z z
f z z

2R

2

1 2

1/(1 ) is analytic everywhere except at the pole 1. Since
  in the common region 1,  
f z z
f f z 2

1

 is the unique analytic 

continuation of  into the 1 region (except for the pole at  1). 
f

f z z 25

-planev

6.4 Landau Contour (continued)

( )

     : Consider the following 2 analytic functions of : 

l ti i th

Example 2 p

  -plane     zv

  path of

/ zip k1
( )

/ Re( ) 0
analytic in the upper

( )                            (38)
half plane, 

            (  is real and pos

z
z

z

zz

g v
v ip k p

f p dv

k



  
    
itive.) p

integration 

-plane     zv
/ zip k

L d

2
( )

/

( )

analytic in the
( )                                         (39)

entire -planez
z

zzL

g v
v ip k

g v

f p dv
p




    

Landau
contour

( )
/

( )
/

Re( ) 0,                     

( )         

z

z

z

z

zz

g v
v ip k

g v
v ip k

p

ip
k

dv

P dv ig







 





 Re( ) 0,                           (40)p 






Landau contour

definition
of Landau
contour

/
( )z

zz zv ip k kg
 

( )
/

( )

Re( ) 0

, ( )

2 ( ),  z
z

zz z

g v
v ip k

p

p
ip
kdv ig



  



 

1 2 2

1

     Since ( ) ( ) in the upper half plane, ( ) is the (unique)

analytical continuation of ( ) into the lo

f p f p f p

f p


wer half plane.
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(Ref Krall & Trivelpiece Secs 8 3 and 8 4)
Electrostatic Waves by the Method of Laplace Transform :   

6.4 Landau Contour (continued)

1 1 1 0

2 3
1 1

(Ref. Krall & Trivelpiece, Secs. 8.3 and 8.4)

          (21)
     Return to (21) and (22): 

4       
e

e
mt f f f

e f d v



 


      

 
v

     

v

                      (22)



 1 1f ( )

     Direct substitution of the nomal mode [(23), (24)] into (21) and 
(22) results in a singularity in (29). Landau resolved this problem by 
treating (21) and (22) as

 

an initial value problem in while analyzingttreating (21) and (22) as 

1 1

an initial value problem in , while analyzing 
a spatial Fourier component in  (denoted by subscript " ").

( , , ) ( , )                                                    (41)
Let

z
k

ik z

t
z k

f t f t ex v v
k




By assumption, the wave
has no variation
 
  x y

1

     Let  
( x

0

1

( )

, ) ( )                                                             (42)

     Sub. (41), (42) into (21), (22), we obtain

( ) ( ) ( )

z
k

ik z

fe

t t e

f ik f ik



 




v (43)

has no , -variation.  x y

0
1 1 1

( )( , ) ( , ) ( )            
            

z z zk k ke z

f
v

e
mt f t ik v f t ik t 



    vv v

32
1 1

     (43)

( ) 4 ( , )                                              (44)z k kk t e f t d v 



   v 27

0
1 1 1

( )( , ) ( , ) ( )            (43)
Rewrite

 





   


z z zk k ke z

f
v

e
mt f t ik v f t ik t vv v

6.4 Landau Contour (continued)

32
1 1

     Rewrite 
( ) 4 ( , )                                         (44)

     Perform a Laplace transform on (43) and (44)

 

  z k k

z

k t e f t d vv

0( )
 [see (32)],  we obtain

( ) ( 0) ( ) ( ) (45)     fef f ik f ik v

3

0
1 1 1 1

2
1 1

( )( , ) ( , 0) ( , ) ( )   (45)
    

( ) 4 ( , )                                                     (46)



 




     

   



z z zk k k k

z k k

e z

f
v

e
mpf p f t ik v f p ik p

k p e f p d v

vv v v

v
  pt

1 1( , )
where 

k kf p fv
0

01 1

( )

( , )                                                  (47)

( ) ( )                                                          (48) 

















k k

pt

pt

f

t e dt

p t e dt

v

v


1

0
1

( )

     (45) ( , )
( , 0) 

 
 


k

k ze
me

f

f p
f t ik v

v
v 1

                    (49)

: Subscripts "0" and "1" indicate respectively

( )
  





k

z

z z

v

A note on notations

p

p ik v

: Subscripts 0  and 1  indicate, respectively, 
zero-order and first-order quantities. Subscript " " indicates a Fourier 
component in

     A note on notations
k

 . Symbols with a " " sign on top are -space quantities.z p 28



6.4 Landau Contour (continued)

0
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     Sub. (49) into (46), we obtain  

4
 




  
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z
k

k i
n e

k
g v t

f t i dv
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0 0

3
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( ) ( )

( , 0)
4

( )  (50)

1 1[ ] 







 




 

 
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 
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z
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k
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v dv
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n
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vp ik v

k ik k

i dv
e d v

p

k d v dv

v

v

l

Im( )p

2 2

1

1 1

(
where 

[ ]
   z

z z
z

k

z z z
z

ip
k

k p ik v k v
k d v dv

g v
0 1

1

1

, 0) ( , 0)
                                  (51)

( ) ( )

   







z x ykn

n

t f t dv dv

g v f dv dv

v

v

    path of 

1

  poles 
of ( ) k p

Re( )p
p
0

0

00 0

1 1
1

2

( ) ( )

     :  

     By (33),  ( ) ( ) ,                          
 









 

z

i pt
k k

x y

i

p

p

n

i

g v f dv dv

Inverse Laplace transform

t p e dp

v

              (52)p
-integrationp

0

Im( )      zv
/ip k

02   ipi

0where ( 0) is a real number. In (50),  is
real by assumption. If 0, we see from (50)
that the pole ( / ) of the integrals lies




z

z

p k
k

ip k v

path of - integrationzv

/ zip k
Re( )zv

1 1

that the pole ( / ) of the -integrals lies
above the Re( ) axis. Hence, ( ) & ( ) 

k k

z z

z

ip k v
v p t

are valid solutions without any singularity. 29
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1
2     Rewrite (52): ( ) ( ) ,                        (52)  

 

 
  i pt

k ki

p

pit p e dp

6.4 Landau Contour (continued)

  poles 
of ( ) p

Im( )p0

0

3

1
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( )

( , 0)

where     ( )                              (


















k

z

z
z

k

z
z

z

ip
k

n e
k

dg v

g v t

v
i dv

p 50)

    path of 
-integrationp

1of ( ) k p
Re( )p

p
0

0
2

2

( )

1
 

 
 pe z

z
z

z

z
z

ip
k

dg v
dv

k v
dv

The solution (52) is in a formmathematical

Im( )      zv
/ zip k

Re( )zv

     The  solution (52) is in a form     
in which the physics (e.g. normal modes and 
dispersion relation, etc.) is not transparent. We
need more work to obtain a solution

mathematical

physics
path of - integrationzv

need more work to obtain a  solution.
     T

physics
his will require a detour of the path of the

-integration into the Re( ) 0 region, which implies that the pole at
/ ill cross the Re( ) a is on hich ( ) is sing lar Th s the




p p
i k 1/  will cross the Re( ) axis, on which ( ) is singular. Thus, the

analytic regio

 kz zip k v p

1

1

n of ( ) is bounded by the Re( ) 0 line, and our first

step is to analytically continue ( ) from Re( ) 0 into Re( ) 0.





 




k

k

p p

p p p 30



1

     By the method in (38)-(40), we 
may analytically continue ( ) from Re( ) 0 into Re( ) 0 by  

k

 Step 1 : Analytic continuation :
p p p

6.4 Landau Contour (continued)

1may analytically continue ( ) from Re( ) 0 into Re( ) 0 by
by changing the path of -integration in (50) from the straight line

  k

z

z

p p p
v

dv  to the Landau contour: .  


 L zdv Im( )      zv
/ip k

0

0

3

1

14

( )

( , 0)

     Thus, ( )                                    (53) 














k

z

z
zL

k

z
z

z

ip
k

n e
k

dg v

g v t

v
i dv

p
original path of 

- integrationzv

/ zip k
Re( )zv

0
2

2

( )

1

Note that this path change will not




 pe z

z
zL

z

z
z

ip
k

g
dv

k v
dv

affect the

-plane     zv
/ zip k

     Note that this path change will not 
0

0
1 1

1

1
2

affect the

value of ( ) ( )  in (52) 

because ( ) in (52) is evaluated along the
 



 

 
  



i pt
k k

k

i

p

pit p e dp

p

same as
original path

0

1because ( ) in (52) is evaluated along the
Re( ) ( 0) line, for which the Landau path
is the same as the original -path (see figures


 

k

z

p
p p

v ). Landau contour
31

1 ( , )
( , )

     Write (53) as ( ) ,                                                   (54) 
k

z

z
D p k
S p k

p -plane     zv
/ zip k

6.4 Landau Contour (continued)

0
3

14

( )

( )
( , 0)

( , )  

where

 


   z

z
z zL

k

z
z

ip
k

n e
k

dg v

p
g v t

v
S p k i dv




zp

implying 
"source" 0

2

2

( )where 

( , ) 1                  



  pe z

z
z zL

z

z
z

ip
k

dg v
dv

k v
D p k dv

( )1

                        (55)

 







p i S p k

 Landau contour

source

0

0
1

1

( , )
( , )1

2then, (52)  ( )                                (56)

     Since ( ) is now regular (analytic and
single valued) in the entire












  


p i pt
k p i

k

z

z
D p k
S p k

it e dp

p
p plane (except

  poles 

Im( )p

single-valued) in the entire p-plane (except 
at poles),  we are free to deform the path of

-integration in (56) (by Cauchy's theorem),
id d th th d t l

p     path of 
-integrationp

1of ( ) k p
Re( )p

p
0

provided the new path does not cross any pole.
     : We now have 2 complex planes: -plane anNote p d -plane, and
there are integrals along complex paths in both planes.

zv

integrationp
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Im( )p

0 ( )1

    - : 
 


p i tS p k

 Step 2 : Deformation of  the p contour in (56)

6.4 Landau Contour (continued)

original

1

 poles 
of ( ) k p

Re( )p
p
0

0

0
1 ( , )

( , )1
2          ( )                                             (56)

     To bring out the physics in (56), we deform
th









 

p i

k p i z

z pt
D p k
S p k

it e dp

e contour as shown to the right Cauchy'sp    original
  -contourp

p
0

deformed 
-contour,

radius 
p Im( )p

0 p i

the -contour as shown to the right. Cauchys 
theorem requires the new path to encircle
(rather than cross) the poles it encounters.

A th t ll th l f ( )

p

radius 

Re( )p

0

growing 
mode

1     Assume that all the poles of ( )  
[ ( , ) / ( , )] are at th




k

z z

p
S p k D p k e (1st-order) 

roots ( 1,2, ) of ( , ) 0. Then, j zp j D p k

integrand
 r ip t ip t

e

Re( )p
damped
 mode jp p

1
( , )
( , )

residues
at poles

integrations away from poles

( )

transient effects [ ] (57)

( )          


 j
k

p
j

z

zj

tS p k
D p kt p p e

0  p i
integrations away from poles transient effects [ ]                               (57)

   



1

  Path integrations away from the poles result in 
( ) 0 as  because  oscillates rapidly with [ Im( )].   k i

ptt t e p p 33
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( )

: Rewrite: 1 0 (55)


 pe z
z

z

i

dg v
dv

kNormal modes dv

6.4 Landau Contour (continued)
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1

2

2
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(

     : Rewrite:         1 0             (55)

     Define  so that ( )  and ( , )        (58)    





  z

k

z
zL z

z

z

i ik zi

ip
k

tt

dg v

k v
Normal modes dv

ip t e t ex
)

 

zv zv
zv

0
2

2then, (55) can be written   1


 pe

zk
dispersion

0   (59)
relation

(corresponding Landau contour: )


     z

zL z
zk

dv
v dv

z zzv
0 i 0 i 0 i

 (corresponding Landau contour:                                                          )

and (57) can be written as a sum of normal modes 

( t ( , )1 transient) (60)( )
 

        jiz tS k e1      ( k t

1

( , )

( , )1
( , )

)            (60)effects

transient( , )   (61)effects

( )

( )


 

 




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 

 








        
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i ik z
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t ex ( , )

where frequencies ( , 1, 2, )

 


      

  
j

j j

zj

ip j  of the normal modes (in 

gereral complex numbers) for a given  can be found from (59).zk 34



     :  
A brings us into the complex variable territory.
Summary of  techniques and theorems used

Laplace transform

6.4 Landau Contour (continued)

     A  brings us into the complex variable territory.
 is then used to deform the -contour (left figure). 

This requires 

Laplace transform
Cauchy's theorem p

1the of ( ) to the entire -plane, 
which in turn leads to the for the integration

 kanalytic continuation p p
Landau contour vwhich in turn leads to the   for the -integration 

(right figure). With the deformed -contour, we are able to apply the
zLandau contour v

p
residu  to extract the essential physics by isolating the normal

d f th ( ti l) t i t ff t
e theorem

modes from the (non-essential) transient effects.

-plane     zv
/ zip k

deformed 
-contour,

radius  
p Im( )p

0 p i

integrand

Re( )p

growing 
mode

damped

Landau contour

integrand
 r ip t ip t

e

0  p i

damped
  mode

35

     -
Rewrite the solution [(29)] obtained by the normal-mode method
A Recipe for Handling Singularities in Normal Mode Method :

6.4 Landau Contour (continued)

     Rewrite the solution [(29)] obtained by the normal-mode method 
in Sec. 6.3 and the new solution [(59) and (61)] obtained by the
Lapla

( )

ce transform method in this section.
dg v0

2

2

( )

( )

      1 0                                                         (29)
 

  pe z

z
z

z

z
zk

dg v
dv

dg v

vk dv



    By comparison, we find that
the Laplace-transform method
gives the additional information
f d li d i f0

2

2

( )

1 0                           
   




 pe z

z
zL

z

z
zk

dg v
dv

vk dv

( )

                                 (59)

t i t 





    i ik ztS k

of mode amplitude in terms of 
the initial perturbation [see (61)].

1

( , )1
( , )

transient( , )   (61)
effects

     We find that (29) and (59) have the same form except for the path

( )


 


  





          
 z

j
j

jz

z

i ik z

j

tS k
i D kt ex

( ) ( ) p p
of the -integration. This provides a simple recipe for removing the 

singularity in (29): replacing  with the Landau contour: .


 L
z

z z

v

dv dv
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     The above recipe is of general applicability; namely, we may 
solve a variety of problems by the (simpler) normal-mode method, 

6.4 Landau Contour (continued)

so ve a va ety o p ob e s by t e (s p e ) o a ode et od,
then remove similar singularities in the solutions by replacing the 

d  contour with the Laudau contour .  

A question may arise as to whether the pole should remain above
Lz zv dv



 
     A question may arise as to whether the pole should remain above 
or below the Landau contour. As just shown, this depends on whether 

the  posoriginal ition of the pole  is above or below the Re( )-axis zz

ip
k v

0
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( , 0)
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i ptp

d 
 

  we deform the -conbefore p
0

0

0

1 1
1

2tour in (52): ( ) ( )

i.e. we determine the original position of  by setting Re( ) 0.

pt
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

 

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6.4 Landau Contour (continued)
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     Rewrite  
( )                      (50)
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R ( ) 0 W if 0 th i i l iti f thkwhere 0 Re( ) 0. We see, if 0,  the original position of the 

pole  lies above the path of -integration, and should remain so

when the -contour in (52) is deformed and the -contour in (50) is
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z

z

z

ip
k

p p k

v

p v
changed to the Landau contour. If 0,  then the original position 
of the pole  lies below, and should remain below, the -contour. 

If we convert the variable to a new variable so that



 

z

zz

ip
k

k
v

p ip     If we convert the variable  to a new variable  so that 
t

  p ip
he solution has the form of a normal mode: exp( ),  the 

original position of the pole can be similarly determined as follows:
  zi t ik z
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                - :Recipe for Landau path in normal mode analysis

6.4 Landau Contour (continued)

0 (poles remain above -contour) :

                                                               (62)
dependence: 

z z

zi t ik z

k v

e






zv zv
zv

0 i 0 i 0 i     dependence: 
0z

e
k

 
 (poles remain below -contour) :

                                                               (63)






zv
i i 0 i

zv zv
zv

0  0 0 
    

                                                                                                      
0 (poles remain below -contour) :

(64)

z zk v



0 i 0 i 0 i

v v                                                              (64)
     dependence:  

0 (poles remain above -contour) :

 

z z

zi t ik ze
k v






zv zv
zv

0 i 0 i 0 i

    

                                                               (65)

 zv zv

zv
0 i 0 i 0 i
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6.5 Landau Damping
     We have shown that a Laplace transform elegantly resolves the 
singularty problem in normal-mode analysis. The recipe is in the
form of the Landau contour for the -integration [(62)-(65)].     
  

zv
   Waves considered so far are electrostatic in nature (i.e. without

a -field component). The Langmuir wave derived in Sec. 6.3 is 
only one example of such waves. In this section, we reconsider the 
La

B

ngmuir wave by properly accounting for the singularity through g y p p y g g y g
the use of the Landau contour. This leads to a very important new 
phenomenon known as Landau damping.

We will then go beyond the scope implied by the section title     We will then go beyond the scope implied by the section title 
with an examination of two types of electostatic , the
Landau growth and the two-stream instability, which occur in a 

plasma with a non Maxwellian electron d

instabilities

istribution We will alsoplasma with a non-Maxwellian electron distribution. We will also 
consider a different type of (low-frequency) electrostatic wave, the
ion sound wave, which involves both the electrons and ions. 40



6.5 Landau Damping (continued)

0
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01 ( )
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     g v
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Landau Damping in a Plasma with a Maxwellian : 
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     Rewrite (59):          1 0,                    (59)

which was derived under the  dependence. Thus, 
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k dv

dgk k v k v k v
dv

v

dv i




    


 



     



 
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01 ( )
Rewrite (67):  zL z

z

zk

dg v
dvv     dv

6.5 Landau Damping (continued)

0 02 3

2

    1 ( ) ( ) (68)

1

[ ]

L

z

z
z

z kz

z

z z z z z z z
z z

k

v

dg dgk k v k v k v
dv dvdv i

    
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     



 


0

0
0

2

2

3
( )

22

2

( ) exp( )  [see (30)]
     For a Maxwellian :  

exp

1
z

TeTe

z

z

z
zdg v

dv

v
v

g v
g

v
v

v







 



2

22
( )               (69)zv

v







32 Tezdv v

0 0 2

2 2

0 02 4 2

2 4

1

31
4 8

( )

2

we use   and  [(18)] to

b i ( ) 3( ) (70)

 

Te

z z z

ax ax
a aa a

dg v dgk k

v

x dx x dx

d

e e   


  

 0 02 4 21 ( )
obtain      ( ) 3( )      (70)

     Sub. (70) into (59) an

z TeL z
zz kz

z z z
z zk v

dg v dgk k
dv dvv dv v i

   
   

2

d using (69), we obtain
2

2 2

2

2 22 2

2 3 3
2

2                    1 (1 3 ) 0                    (71)z Tepe peT k vz

z Te

ek v
v

i ek





  




   
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2 22 2

2 3 3
2

2Rewrite (71): 1 (1 3 ) 0 (71)z Tepe peT k vz ek v
i ek


  



   

6.5 Landau Damping (continued)

2

2

2 2

2 3 3

1 1
2

2

1 1 1

     Rewrite (71): 1 (1 3 ) 0          (71)

     Let  and 1 (1 ) (1 2 )ii i
rr i r r

z Tev
i e

i i i

k


  
     





 

      

 
 



     Keeping terms up to first order
rr rr r   

2 2

2 2

2

2

2 22 2 2

3 3
2

2

, (71) gives

         1 (1 3 ) 2 0          (72)Te

r
pe pe pe ziT

r

k vz e rk v
v

i i ek






   
 



    2

     We may solve (72) by the method of iteration. To the lowest order, 
(72) gives . To fr pe

rr r z Ter vk

 

 


2 2 2 2

irst order, the real part of (72) gives 
k k

2 2

2 2 2 2
22 3

2                 (1 3 )   (1 )             (73)

and the imaginary part of (72) gives 

pe r pe
T T

r
z ze e

pe pe

k v k v
        

2

4

3 38                  pe
i

z Tev
ek



  
 

2

2 2
3
22

  [ 0]                               (74)

pe

z Te
z

k v
k



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     The electron Debye length ( ) can be writtenDe

kT kT v


6.5 Landau Damping (continued)

0 0
2 2 2

2
2

4 4
                                                 (75)

     Thus, (73) and (74) can be written   

De
e e e T

e
e

pe

kT kT m
mn e n e

v
     

2 2k (1

        

r pe   2

2 2

2

4 2 2 2 2

2 2

3 1 3
2 22 2

3 3
2 2) (1 )            

(76)pe

pe De
T

z
z e

pe

k k

k v
k




  

    

  


 4 2 2 2 2

3 3 3 3

2 22 2
8 8       

where  and  agree with (6.52) and (6.53) in Nicholson.

pe pe zTe De

D
i

r i

z

eTez z

k v k
v

e e

D

k k
 



 

     

:  

 

     Discussion

    (i) (76) is derived under the  dependence with 0.

Hence,  is a negative number and , which impliesi

z
z

i

i ik zt

t
e k

e




 





 

, g , p
that the wave is damped even though the plasma is assumed to be 
collisionless

i 

. This is known as Landau damping.
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     Rewrite (76):   

Tzk v

6.5 Landau Damping (continued)

2

2

4 2 2 2 2

2 2

3 1 3
2 22 2

3 3
2 2(1 ) (1 )  

          (76)pe

pe pe zTe De

r pe pe De

z

z
Tz e

pe

k v k

k v
k

e e


 

   

     

    


   3 3 3 38 8  

     (ii) In the limit of 0,  we have  and 
D

i

r pe i

eTe

e

z zv
e e

T

k k 

  

   
  0. Thus,

(76) reduce to the (undamped) plasma oscillation of a cold plasma.


( ) ( p ) p p
discussed in Sec. 1.4. This shows that the plasma temperature is 
responsible for both the Landau damping and the change from an 
oscillation phenomenon to a wave phenomenon

0 ( )zg v


zk

oscillation phenomenon to a wave phenomenon.
   (iii) Mathematically, contribution to  comes 
from the residue of the pole at /  in the 

integration Physically this implies that

i

z zv k
v




     
zvTev

zk-integration. Physically, this implies that 
Landau dam

zv
ping is due to resonant electrons  

moving at the phase velocity ( / ) of the wave. zk 45

 How will the result be changed if 0,  while still: z

i ik zt
k    Question

 


6.5 Landau Damping (continued)

assuming the  dependence?
:

     In this case, from (63), we use the contour                     instead of

zi ik zte
     Answer

 

zv

        

0 0 01 1

/

( ) ( ) ( )

             . Thus, the only change is to replace "+ " in (66):

      z zL z z

z z z

z z zk k v k

dg v dg v dg v
dv dv dvv v

i

dv P dv i 







    

  
zv

         

0 ( )zg v

/

with " ". This will result in the same expression for , br

z zz zk k v k

i



 


 ut with
a sign change in  i.e. i

       

zv
Tev


zk

2

4 2 2 2 2

3 3 3 3

3 1 3
2 22 2

8 8 

pe

pe pe zTe De

D
i

z

eTez z

k v k
v

e ek k


 

     
 

     Since 0,   is still a negative number and the wave will be
 at the same rate as is expected f

z ik
damped


rom symmetry considerations.
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C id l h l t i t f 2 ti ll if

Landau Growth in a Plasma with a Bump in Tail Distribution : 

6.5 Landau Damping (continued)

0 0

     Consider a plasma whose electrons consist of 2 spatially uniform 
components with densities  and , and equilibrium distributia bn n

0 00 0

ons
g ( ) and g ( ) (see figure below). Assume that (1) ;  a z z ab bv v n n

0 0

0

(2) g ( ) has a -spread of  centered at 0; and (3) g ( ) 
has a -spread of  centered at . Thus, g ( ) loo

a z z z zTa b

z z zTaTb b b

v v v v v
v v v v v v


 

0

ks
like a small "bump" in the "tail" portion of g ( ).a zv0p p g ( )

     To be self-consistent, we assume further that the ion density is 
equal to the total electron density, and the ions drift to the right with
a

a z

current equal and opposite to the electron current Thus there isa current equal and opposite to the electron current. Thus, there is
no electric or magnetic field at equilibrium.

  
0g ( )a zv Tbv

 
 

0g ( )a z

0g ( )zb v

zv
 bv

Tav

0 47

     Assuming  dependence with 0 and treating each
component separately as before we obtain the dispersion relation:

z
z

i ik zte k  
6.5 Landau Damping (continued)

22
0 0

2 2
1 1 (( )

component separately as before, we obtain the dispersion relation:

      1 pa pb b

z z
zL

a
z z

z z

z

zk k

dg vdg v
dvv vk kdv 


  



)
0      (77)zL

z

zdv dv 


( )A

0
2 2

( )

     For term ( ), we assume /  (no resonant electrons). Thus,

g ( ) ( ). An integration by parts gives: Term (A) /  (78)
z Ta

a z z z

B

A k v

v v k


  



   
0g ( )a zv

g ( )v
zk


00     Since g ( ) g ( ), the z a zb v v real part of term ( ) is negligible
compared with term ( ). However,
we must keep the imaginary part of

B
A

 
 

0g ( )zb v

zv
  bv

Tav

0
0

/

( )

term ( ) because it determines .

     Thus, Term ( ) .                        b

i

v k

z

z

dg v
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B

B i







                   (79)
/z zv k

22
0

2 2
/

( )
     (77)-(79) give       1 0               (80)
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   

6.5 Landau Damping (continued)

22 2

/

21 1 1

     Writing  and assuming 1,  we obtain by  

expansion: (1 ) (1 2 ). Then (80) gives

z z

i

z

i

i

v k

r i r

zdvk

i

i i





 
 

  




 

   



22 2expansion: (1 ) (1 2 ). Then (80) gives
rrr r

i i   

0
2 3

0 0( ) ( )       (81)pa pb pa b
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b b

r

z zdg v dg vn   
 





 

0 0: due to ;  : due to  a br rg g

0

0

0

0 0
2 2

/ /
2 2

     (81) shows that the sign of  depends on the sign of /
at / Thus 0 (Landau growth) if

z r z z r z

b

p p b
a

b b

z z
i

zi

v k v kz zndv dvk k

dg dv
v k

 

 


 

 
 

  / falls on thek

   
g ( )v

Landau
growthzk

  
 

at / . Thus, 0 (Landau growth) ifz r z iv k  

0

0

 /  falls on the 

positive slope of ,  and 0 (Landau damping) if /  falls
on the negative slope of . The

r z

r zib

b

k

g k
g


 

 
  

0g ( )a zv

0g ( )zb v

zv
 bv

Tav

growthzk  

0
 

Landau growth is our first example
of  equilibrium solutions.unstable
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     A Qualitative Interpretation of Landau Damping and 
Landau Growth :

6.5 Landau Damping (continued)

   

     Assume that an electrostatic wave 
with phase velocity /  is present in zk

     Landau Growth : 
    

/ph z

zv
v k

the plasma. An electron moving with 
velocity  sees the wave at the Doppler-shifted frequency :

                                                                               (82)
z

z z

v

k v


 


   ( )

     If 0 (i.e. electron velocity phase ve
z z

z zk v      locity), the
electron experiences almost a DC electric field. In this field, it will 
gain or lose energy for an extended period of time ( 2 / ). This gain or lose energy for an extended period of time ( 2 / ). This
phenomenon is known as resonant interaction. 
     D

 

ivide the electrons into
slow electrons: 0k v   

a slow electron
a fast electron



slow electrons: 0
    

fast electrons:   0
z z

z z

k v

k v

 
 
  

    
/ph zv k
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     For both slow and fast electrons, some
will lose energy to the wave and some will

6.5 Landau Damping (continued)

 a slow electron
f t l t


will lose energy to the wave and some will
gain energy from the wave, depending on 
the position of the electron relative to the 
phase of the wave

 a fast electron
/ph zv k



phase of the wave.
     If a sl

2

ow electron loses energy in the resonant interaction, its  
decreases. Hence, its  ( 0), which is a positive number
b t A lt th ti f t i d i t ti ( )

z

z z

v
k v


    

2becomes greater. As a result, the time for sustained interaction ( ) 
bec




omes shorter. This will result in  resonance. 
     On the other hand, if a slow electron gains energy in the resonant 
i t ti i d b ll H th ti

weaker

interaction,  increases and  becomes smaller. Hence, the time 
for sustai

zv 
ned interaction becomes longer (  resonance). This 

give the electrons in the energy-gaining phase the advantage and, on
stronger

average, slow electrons gain energy from the wave.
     Similarly, fast electrons will, on average, lose energy to wave.

51

     We have just concluded that, on average, slow electrons (relative 
to the phase velocity of the wave) gain energy from the wave and

6.5 Landau Damping (continued)

to the phase velocity of the wave) gain energy from the wave and 
fast electrons lose energy to the wave. Thus, if the plasma cont

0

ains 
more slow electrons than fast electrons (i.e. a negative slope of 

/ l f fi ) h ff i f f h
g

kat / , see left figure), the net effect is an energy transfer from the 
wave to the electrons (Landau damping).
     By similar

zk

 argument, if the plasma contains more fast electrons 
than slow electrons (see right figure), there will be a net energy 
transfer from the electrons to the wave (Landau growth).

0 ( )zg v   
( ) 

      

0 z

zvTev


zk  

  

0g ( )a zv

0g ( )zb v

zv
 

Tav

zk


0

more slow electrons 
than fast electrons

more fast electrons 
than slow electrons
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6.5 Landau Damping (continued)

     
We have just considered a case in which details of the particle
Kinetic Treatment vs Fluid Treatment :

     We have just considered a case in which details of the particle
distribution function determine whether a wave grows or damps. 
On the other hand, fluid equations (derived in Sec. 1.4 of lecture 

t b i l th d) f ll d i d f th Vlnotes by a simple method) are formally derived from the Vlasov
equation (Sec. 7.2) by an integration procedure over the velocity 
space, in which details of the distribution function are lost. Hence, 

fl id ill i h L d d i / h (S 7 3)a fluid treatment will miss the Landau damping/growth (Sec. 7.3) 
and other effects sensitive to the distribution function, but results 
of fluid equations are implicit in kinetic equations.
     Chapter 7 contains a fluid treatment of important plasma modes 
and instabilities. Here, as a supplement to Ch. 6, we will cover some
of these topisc in the framework of the Vlasov equation.
     Our first study of fluid modes is on the two-stream instability. 
More will be considered in subsequent sections of this chapter.

53

     -

     Consider again the bump-in-tail model for Landau growth (upper

Two Stream Instability I : 
6.5 Landau Damping (continued)

2
0

2
1 ( )

g p g ( pp
figure). The dispersion relation obtained by the kinetic approach is

       1 


 pa

z

a
z

z

zk

dg v
dvvk

2
0

2
1 ( )

0     (77)


  pb b

z
z zL L z

z

zk

dg v
dvvkdv dv

z z
z

zk
dvk

     Suppose the velocity spreads ( , ) of the 2 components vanish

(lower figure). We then have a situation where one component streams 
h h h

 
T T

zL L

a b

z
z

zk
dvk

v v

I i (77) b d l ithrough anoth

0 0

22

er component. Integrating (77) by parts and letting

g ( ),  g ( ), we 


  a z zb b

pa pb

v v v   
0g ( )a zv

g ( )v
Tbv

( )zv

2 2( )
obtain  1 0                                                        (83)

     This example shows that 


   

pa pb

bzk v

the
the kinetic result [(77)] can be

 
  

0g ( )zb v

zv
  bv

Tav

0

zv

( )z bv v 
( )z

bv0

the kinetic result [(77)] can be
reduced to the fluid result [(83)] 
in the proper limit. 54
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2 2( )
     The dispersion relation: 1 0  [(83)] can be 


   

pa pb

bzk v

6.5 Landau Damping (continued)

      ( , )a zD k
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22

2 2

( , )( ) 1

( )

written    (1 ) (1 )                                             (84)
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 
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z
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k v zk
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     (84) can be regarded as the coupling between the plasma mode 
( 0) d th b d ( 0) Th li i t t

    zb
z bD k

D D

k v

( 0) and the beam mode ( 0). The coupling is strongest 

near the intersection of the two modes 

 a bD D

(see Figure). The intersecting 

point is at  and , which are solutions of   


 pa z
pak v

( , ) 0
                   

( , ) 0





 

b
pa z

a z

zb

D k

D k

v

55

22

2 2
2     Rewrite (84): (1 )(1 )                                  (84)zpa pbbk v 
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6.5 Landau Damping (continued)

     To show that there is an instability, we will only look for the  
value at , i.e. at the point of stro/z pa bk v


 

 ngest interaction. Letting

t (1 ) (1 2 ) (85)1 1 1 1   
2 2, we get (1 );  (1 2 )  (85)

     Sub. (85) and  into (84) and keeping terms up to first

order in small quantities and we obtai
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     From (86), we find the frequency of the unstable mode:
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6.5 Landau Damping (continued)
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     Like the case of Landau growth (upper figure), the free energy

   
0g ( )a zv

( )
Tbv

e e c se o d u g ow (uppe gu e), e ee e e gy
available in a non-Maxwellian plasma drives a two-stream instability
(lower figure) . However, in the latter
case there are no electrons at exactly

 
  

0g ( )zb v

zv
  bv

Tav

0 /r zk
( )v

 

case, there are no electrons at exactly 
the phase velocity of the wave. Thus,
there is no singularity problem and a
fluid treatment will also be adequate

zv
( )z bv v 

( )zv

bv0

/r zk
fluid treatment will also be adequate.
(See Sec. 7.13 for a fluid treatment of
a slightly different two-stream model.) 57
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    Comparing the Landau growth rate in (81) and the two-stream

 dg vn

6.5 Landau Damping (continued)
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2 [Landau growth]

growth rate in (87): 

( ) [Two-stream instability]
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4/32
( )       [Two stream instability]

we ma

  i pa an
y show that  [Landau growth]  [Two-stream instability].

     This is because, in the Landau growth (upper figure), electrons 
 i i

drifting slower than the wave absorb energy from the wave, whereas
in the two-stream instability (lower 
figure), all electrons deliver energy 

   
0g ( )a zv

( )
Tbv

0

to the wave because they all drift 
faster than the wave.
    As the  spread increases from 0 bg
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0 p
to a large value, the fluid instabi

bg
lity 

will transition to a kinetic instability.
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( )z bv v 
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bv0
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-     Two Stream Instability II :

6.5 Landau Damping (continued)

( )z bv v ( ) z bv v
     Consider two cold electron beams 
of equal density  streaming in an ion 

neutralizing background in opposite 
bn

zv

( )z bv v( ) z bv v

bv0 bv
directions (  and ). In (83), we 

have already obtai

b bv v
2

2( )
ned the term for the forward stream: .




pb

bzk v

bv0b

     By symmetry, the backward beam will have a similar form, with 
 replaced by . Thus, following the same treatment leading to 

(83), we obtain 

b bv v

the dispersion relation:

2

2 2

2 2( ) ( )
                   1 0,                                     (88)

which gives a quadratic equation in :

 
    

pb pb

b bz zk v k v

4 22 2 2 2 2 2 4

which gives a quadratic equation in :

          ) 22(



     z z zpb b pb bk v k v k v4 0                     (89)b
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6.5 Landau Damping (continued)
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     The solution for  as obtained from (89) is

                    ( )                     (90)4



     z zpb b pb pb bk v k v
2 2 2     I 2 2 2

2 2 2

t can be shown from (90) that for, 2 / ,  all value of

 are real (no instability). However, for 2 / ,  two values 

of will be a pair of complex conjugates and one of them gives rise










z pb b

z pb b

k v

k v
of  will be a pair of complex conjugates and one of them gives rise 
t


22 2

max
o an instability.

     We may find the wave number ( ) for which the growth ratezk
22 2

max 3

2

maximizes by finding the value of  for which / 0. The

result is , which corresponds to a maxim


 

 

z z

z
pb

bv

d dk k

k um growth 
b

rate of / 2. We will return to this problem again in Special 

Topic II in connection with a new subject: the absolute instability.

  pbi
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     -  (See Sec. 7.3 for a fluid treatment)

At low frequencies the ion contribution to the dispersion relation

Ion Acoustic Waves :

6.5 Landau Damping (continued)

     At low frequencies, the ion contribution to the dispersion relation

cannot be ignored. For low frequency electrostatic waves, we simply

2

 

add to (59) the ion term (the species subscript " " or " " is also added),e i
22

0 0
2 2

1 1 ( )( )
    1 0       (91)

     Assume a Maxwellian distribution for bot

 

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( ) ( ) (93)
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with . Assume further /  (see figure) so that 
there is negligible electron Landau damping (because / 0)







  Te Ti Te Tizv v v k v
dg dv0there is negligible electron Landau damping (because / 0)

and negligible ion Landau damping (because / ). We will 
therefore




 Ti

e z

z

dg dv
k v

 neglect the imaginary part of both integrals in (91). 61
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     For the electrons, sub.  into    zL
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6.5 Landau Damping (continued)

0
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2 2 2 2
1 ( ) 1

and neglect  ( ) in the denominator, we obtain

( ) 1 1
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     For the ion integral: , we assume  and


 z zL
i

z
z

z

z zk

dg v
dv kv dv v

0 21 ( )

follow the same steps leading to (70). This gives the cold ion limit:
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dg v k
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L z
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zk
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22 2     Sub. (94) and (95) into (91), we obtain    1 0,     (96)

which is the most basic form of the dispersion relation because ion

1 
  pi

Dezk
which is the most basic form of the dispersion relation because ion 
thermal effects and electron Landau damp have all been neglected.
From (96), we find ,  i.e. this is indeed a low-frequency wave.  pi 62
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22 2     The dispersion relation      1 0                        (94)1 
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6.5 Landau Damping (continued)
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     Physically, when the ions are perturbed, electrons tend to follow


is
ekT

mC

the ions to shield their electric field, thereby reducing the restoring
forces on the ions. So the wave has a frequency lower than  (
would be the ion oscillation frequency if the electrons were immobile).

 pi pi

However, the electrons cannot effectively shield the ion electric field
if  (wavelength)  (see Sec. 1.2). Thus, when ,  or 

1,  (94) shows that  will approach .
    

 
 


zDe De De

pi

k
, ( ) pp

     Since the plasma motion is longitudinal and  is similar to the 
sound speed of a neutral gas,

pi

sC
 the wave is called an ion acoustic wave.
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6.10 General Theory of Linear Vlasov Waves
     We have so far treated only electrostatic waves in the absence of 

t l fi ld I thi ti l th d k f l

Part 2

an external field. In this section, we lay the groundwork for a general
theory of linear waves, both electrostatic and electromagnetic, in an 

 and  plasma. We assume that the plasma is immersed 
i if i fi ld l h i b
infinite uniform

l 0 0

0

in a uniform  magnetic field along the -axis: , but
here is no external electric field ( 0).   

     

 
t




zexternal z BB e
E

Equ -   ilibrium (Zero Order) Solution : 



0

0 0 0 0 0

000

1
     An equilibrium solution ( ) must satisfy the zero-order Vlasov

equation: ( ) ( ) ( ) ( ) 0




  

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q
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                         0 0

0

( ) ( ) 0                                   (101)

     Thus, any function of the form ( , ) satisfies (101), provided
that the total charge and current densities of all species vanish so



 

  z

z

B f

f v v
vv e v

thatthat the total charge and current densities of all species vanish so 

0

that 
there is no net self field at equilibrium. This in turn makes  and  
constants of the motion in the only field present: .
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     Examples of equilibrium solutions (normalized to ) are: 
n

n



6.10 General Theory of Linear Vlasov Waves (continued)
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     In (103), the particles have two temperatures,  and . In
(104), all particles have the same

T Tzv v

0( ) and ( 0). (104) is 
approximately self-consistent if the self magnetic field due to the

  zv v v

gyrating particles is negligible.

-
     The linear properties of a plasma is 
     First Order Equations :

contained in the dispersionp p p p
relation. To obtain the dispersion relation, we first linearize the set
of Vlasov/Maxwell equations by writing
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As before, first-order
quantities are denoted
by subscript "1".1
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ub. (105)-(109) into the Vlasov/Maxwell equations. Zero-order
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6.10 General Theory of Linear Vlasov Waves (continued)
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     Change the variable  in (117) to  and note that ( )  and 
( ) A integration of (117) from to gives
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( ) .  A -integration of (117) from  to  gives      
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     We now consider a normal mode by assuming
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As before, subscript " "
denotes a normal mode
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k tkf e f t ek x k xv v



( ) (i t i t t i i     k x k x x)

01 1
1

1

    [ ( ) ] ( )









  




       



k k

t i t i

ti t i

q
m c

q

dt t e fk x
v

k x

E v B v

( ) (i t i t t i i        k x k x - x)

01 1

( ) (

1   [ ( ) ] ( )

                                                            










  


    

       


 k k

ti t i

i t t i

q
m ce dt t f

e

k x
v

k x -x)

E v B v

                  (122)

: In (122) the opertaor operates on ( ) onlyNote f v0    :  In (122), the opertaor operates on ( ) only. Note f v

7

1     We assume Im ) 0,  then [ ( )] 0 and ( 
    


   i t i

ti kf t e k xv

6.10 General Theory of Linear Vlasov Waves (continued)

1

(122) becomes 

     ( ) 




  



i t i
k

t

t

f e k xv

01 1
1    [ ( ) ] ( )

                                          







  
        k k

ti t iq
m ce dt t fk x

vE v B v

( ) (                              



    


 i t t i

i t i
e k x -x)

k x

01 1 1
1

     Factoring out the  dependence, we obtain 

      ( ) [ ( ) ] ( )







  

       k k k

i t i

tq
m c

e

f dt t f

k x

vv E v B v

( ) ( i ik )                                      ( ) (

1

                                     (123)
     :     

     (i) ( , ) is not in (120) because, with the assumed   
d d i i li it i th h th ti





    

  

 i t t i

i t i

e
Note

t e

k x -x)

k xx
J it ti1 1dependence,  is implicit in  though the conti k kJ

1 1 1 1
1

nuity equation:

           0    0  
 

          k k k kt i iJ k J k J
8



     (ii) Although (123) is derived under the assumption of 0, i

6.10 General Theory of Linear Vlasov Waves (continued)

the dispersion relation to be obtained from (123) can be analytically 
continued to an arbitrary  by the use of Landau contour for the  -
integral [see (135)]. The argument follows the treatment of Landau 

zv

0

g [ ( )] g
damping. 
     (iii)  as a vector is a function of . However, it is understood
that ( ) is a function of scalars and ,

 


t
f v v

v
v both being constants0that ( ) is a function of scalars  and ,   zf v vv

0

both being constants 
of the motion. Hence, in writing ( ) in (119), (122), and (123), 

is not displayed as a function of .
(iv) The method we employed to obtain (123) is called "method

 
 

f
t

v
v  
     (iv) The method we employed to obtain (123) is called method 
of characteristics" or "integrating over unperturbed orbit".

9

1
     : From the linearized Maxwell equations: 

(113)  
Field equation

E B

6.10 General Theory of Linear Vlasov Waves (continued)

1 1

1 1 1
41

                                                        (113)
               

                               





  

  

c t

c ct

E B

B E J
2 41 1

                 (114)

we obtain ( ) (124)  




       E B E J2 2 21 1 1 1

1 1

1 1

we obtain   ( )      (124)

( , )
( , )

For a normal mode:
( )

  

     

  
      

k

k i t i

c t tc t c
t
t

e k x

E B E J

E x E
B x B

JJ
(120)

11

11

     For a normal mode:        
( , )

( )( , , ) 

  
  

   
k

k

e
t

ff t
JJ x

vx v
2

2 21 1 1
4

   (120)

(113) and (114) give       ( )          (125)      k k k
ik k E E J2 21 1 1( ) ( ) g ( ) ( )

: Subscripts "0" and "1" indicate, respectively, 
zero and first order quantities. Subscript " " in

k k kc c
     A note on notations

k dicates a normal mode.
S b i t " " i di t ti l iSubscript " " indicates particle species.
     (123) and (125) together with the orbit equations (118) form the
basis for our treatment of linear plasma waves in Secs. 6.11 and 6.



12. 10



6-11 Linear Vlasov Waves in Unmagnetized Plasma 

01 1 1
1     Rewrite (123):  ( ) [ ( ) ] ( )


       k k k

tq
m cf dt t fvv E v B v01 1 1

( ) (

( ) ( ) [ ( ) ] ( )

                                                                              (123)

     Assume the absence of

  




    

k k k

i t t i

m cf f

e

v

k x -x)

 an external magnetic field ( 0). Then, 

( ) ( )1

( )
(118) reduces to , and (123) can be written

( ) ( )

( ) ( ) ( ) (126)      

   
      

     
t i t t i t tq

t const
t t t

f f dt e k v

v v
x x v

v E v B v01 1 1 ( ) ( ) ( )  (126)

     Again, 

   
    k k km cf f dt evv E v B v

1
0

1
1 1( ) ( )

assuming 0,  we obtain from (126)

( ) (127)


  



k

i

ck k fqf vE v B v
v

0

1 ( )             ( )                                  (127)

     : (127) can be readily derived by setting 0 and sub. the
norm

   



k m if

Note B
k vv

al mode (120) into the linearized Vlasov equation (110):

0

0

01 1 1 1 1
1 ( ) ( )

but in the presence of , we must use (123) (see next section).

 
    


          z

z

q q
m c m ct f f B f f

B

v vv v e E v B

e 11

1
0

1
1 1( ) ( )

( )     Rewrite  ( )                         (127)


 
  

 k
ck k fq

m if vE v B v
k vv

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

0 0 0

01

( )

     Assume  ( ) is an isotropic function, i.e. ( ) ( ).

Then, ( ) 0. Since there is no extern
  



 


  k

i

f f f v

f vv

k v

v v

(v B ) al magnetic  

0

01 ( )

field and ( ) is isotropic, the plasma properties are also isotropic. 

Without loss of generality, we assume . Thus, (127) becomes




 z z

k f vq

f v

k

vE

k e

1
01 ( )

(                  ( )








z
k

k f vq
m k vif vE

v

3
1 1

)                                           (128)

     Sub. (128) into ( )  [(121)], we obtain 


  
z

k kq f d vJ v v

3
2

1
01 ( )

( )                                      (1





  

z z
k

k f vq
m k vi d vvE

               J v

2 4

29)

The field equation: ( ) [(125)]      ik k E E J2 2

2

2 2
2 2

1 1 1

1 1 1
4

     The field equation: ( )  [(125)]

may be written    ( )                 (130)

  

  

    

   

k k k

z z zkz k k

i
c c

i
c ck E k

k k E E J

e E J
12



3
2

01 ( )
: 

( )   k f vq

     Electrostatic waves

dvE

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

2

2 2

3

2 2

1

1 1 1

01 ( )
( )

4

                                   (129)
     Rewrite 

( ) 0                      (130)






  


 

    

 
z z

k

z z zkz k k

k fq
m k v

i
c c

i d v

k E k

vJ v

e E J

     For electro 1

1 1

static waves, ( ). So we set 

                                                                                     (131)

(129) then gives




 z zk

zk kz

k

E

E k e

E e

2

1 1

(129) then gives 

           ( )




   x y zx y zk kz

f
q
mi E v v vJ e e e 3

1
2

0

2 2 2

( )

               (132)

I (132) ( ) [( ) ] i f i f







 

z z

z

v
v
k v d v

f f 2
0 0

2 2 2     In (132), ( ) [( ) ] is an even function of 

and . Hence, the  and  components vanish upon, respectively,

 and  integrations, and

    x y z x

y

x y

f v f v v v v

v x y

v v  we havegx y

3
0

2

1 1

( )

                               (133)








  

z
z

z z
zk kz

f v
v

vq
m k vi E d v                   J e

13

3
0

2
( )

i (133)

 

z
f v

v
vq d

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

0

3

0 0

1 1

1

     Rewrite                             (133)

     Defining ( ) ( )  [as in (28)],  we obtain




 

 

 



 



z

z z
zk kz

z x y

vq
m k v

n

i E d v

g v f v dv dv

J e

0

0
2

1 1

( )






 
z

z
z

zk kz

dg vv
n q dv

m ki E              J e

1

  






  z z
zdvv

v

0 0
2

1 1
( )

(1 )

1

1

     Writing ( 1 ),  we have

,



 








 



  

  

z

z z z z z

z
z

z z
zk kz

z

z

dg v
dv dv

v
k v k k v

n q
m k k vi E              J e

0     The first term vanishes upon -integration because ( ) 0
at 








z z z

z z

z

z

v g v
v

( )

. Thus,
dg v

0
2

0
2

1 1

( )

              ,                        (134)







 

   
z

z
z

z
zk kz z

zk
dv

dg v
n q dv

m vki EJ e
14



0

0
2

( )

Sub and 


 
   

z

z dv

dg v
n q dvE i EE e J e

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

2

2

2 2
2 2

11 1 1

1 1 1
4

     Sub. and  

into the field equation:     ( )     (130)




  

  

   

 z
zz zk kz k kz

z z zkz k k

z
zk

dvm vk

i
c c

E i E

k E k

E e   J e

e E J

we obtain the dispersion relation for electrostatic w

0

2

2
( )

aves:

                         1 0,                                (135)





  p
z

z

dg vz
dv

vk dv2 , ( )

where, by the recipe in (62), we have replaced  with .

In deriving (123) and (127










 



L

z
zL z

z

z z

k
vk

dv dv

) we have assumed 0 With the      In deriving (123) and (127), we have assumed 0. With the 
Landau contour,  in (135) can have any value provided the pole

/ does not cross the Landau contour.
(135) agrees with the electrostatic disperson relations in

 








z

i

k
Sec 6 5     (135) agrees with the electrostatic disperson relations in Sec. 6.5

for the Langmuir wave, Landau damping/growth, two-stream insta-
bilities, and ion acoustic waves. 15

1 1 1
41     : Rewrite                             (114)c ctDiscussion 

  B E J

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

1 1 1 1
4 41

     For the normal mode in (120), the RHS of (114) gives

              ( )              k k
i t ii

c c c ct e       
    k xE J E J

( )

     (136)

dg v0

0
2

2

1 1

1 1

( )

     Inserting  [(134)] and 

[(131)] into (136) we find

z

z
z

z
zk kz

k k

z
zk

dv

dg v
dvn q

m vki E

E







 

 



 J e

E e

0
2

0
2

1 1

1 1 1 1

( )
4 4

[(131)] into (136), we find

  
z

z
z

z

zk kz

z zk k kz kz z
zk

dv

dg v
n q dvi i

c c c c m vk

E

E i E







     


 

   

E e

E J e e

( )dg v



0

2

2

1

0 by (135)

( )

                             1 0{ }p

z
z zkz L

z
z

zk

i
c

dg vz
dv

vkE dv





 




   e


0 by (135)

     This shows that, the displacement current and particle current
exactly cancel out. Hence, we have an electrostatic wave. 16



2 ( )

:   
 f

     Electromagnetic waves
E

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

2

2 2

3

2 2

2

1

1 1 1

01 ( )
( )

4

                                (129)
     Rewrite 

( ) 0                    (130)






  




 

    

 
z zk

z z zkz k k

k f vq
m k v

i
c c

i d v

k E k

vE
J v

e E J

      For electr


1

1 1

omagnetic waves, ( ). So,  without loss of

generality (because the plasma is isotropic), we set   (137)

Then (129) and (130) give

 


z zk

yk ky

k

E

E k e

E e

2

1 1

     Then, (129) and (130) give 

(                  



   x y zx yk ky
q
mi E v v vJ e e e 3

0 ( )

)    (138)















 
z z

z
y

f v
v
k v d v

2

2 2
2

0

1 1
4( ) 0                                   (139)

      ( ) is an even function of . Hence, the -component of (138)


  


    z yky k

x

i
c ck E

f v v x

e J

vanishes upon -integraxv 0tion. ( ) is an odd function of . 

Hence, the -component of (138) vanishes upon -integration. 



 y

y

y

v f v v

z v
17

0( )
     We are then left with only the  component of (138):    

f vv

y
6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

3
2

1 1                                             (140)

     Integrating (140) by parts of over  yiel


 


  

z z

y

yk ky
y

y v
v

q
m k vi E d v

v

J e

ds

30
2

1 1
( )

                    

     Using the one-dimensional equilibrium distribution function:  






   
z z

yk ky
f vq

m k vi E d vJ e

0 00

1

1                   ( ) ( ) ,   

we may write (140) as  

  z x yng v f v dv dv

     J 0 0
2

1
( )

     (141) 
   z

z
yk ky

n q g v
m k v dvi E e1y ( )

2

2 2
2 2

1

1 1

1 1 1
4

( )

     Sub. (141) and  into 

( ) 0 (130)

 

  





    

  z
z z

yk ky

yk ky

k k k

m k v

i

E

k E k

E e

e E J2 2

0
2

22 2

1 1 1

( )

                ( ) 0                     (130)

we obtain         
  

 

  z
p

z z zkz k k

z

c c
g v

c

k E k

k

e E J

0                        (142)
    z

z zk v dv
18



0
2

22 2 ( )
     Rewrite   0                             (142)






      z
z

z z
pz

g v
k vc

dvk

6-11 Linear Vlasov Waves in Unmagnetized Plasma (continued)

     EM waves in a plasma have a phase velocity  [see (143) below].
Hence, we may assume /  and neglect the the

 






z z

z z

k vc

c
k v   term in 

the demonamitor of the integral in (142)
z zk v

   pe


0

0( ) 1 1

the demonamitor of the integral in (142).

     ( )  

This results in the dispersion relation:




     z
z

z z
z z

g v
k v dv dvg v

zk
pe

2 2 2 2

    This results in the dispersion relation:

                                                 pezk c                                 (143)

where we have neglected the small ion contribution.
    The  vs  plot (see figure) is similar to that of the waveguide. 

There is a cutoff frequency , below w



z

pe

k
hich EM waves can not

propagate. Short radio waves ( 10 MHz) are hence reflected from p p g ( )
the ionosphere. This has been exploited for long-range broadcasting.
     By comparison, the free space is non-dispersive with .  zk c
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6-12 Linear Vlasov Waves in Magnetized Plasma
(Ref.: Krall and Trivelpiece, Sec. 8.10)

      We begin this section with a derivation of
the general dispersion relation for waves in an infinite, uniform, and 

 plasma on the basis of the following linearized eqmagnetized

Dispersion Relation :

uations

01 1 1
1

derived in Sec. 6.10 for a normal mode with  dependence:

( ) [ ( ) ] ( )

 



 

  

       k k k

t

i t i

q
m c

e

f dt t fv

k x

v E v B v

 (                                                                      i t te

2

2 2

) (

1 1 1
4

      (123)

 ( )                                       (125)  

  

     

i

k k k
i

c c

k x -x)

k k E E J

0 0where we have assumed a uniform external magnetic field , 
and shown that the equilibrium dis


 zBB e

tribution function in such a field is
( ) ( ) So the plasma is isotropic in the -dimensionsf f v v x yv 00 ( ) ( , ). So the plasma is isotropic in the , -dimensions,

but it is 3-dimensional anisotropic. Thus, we expect the conductivity
to be in the form of a ten

   zf f v v x yv

1 1sor :  .  
 

k kJ E 20



     :

     
General form of  the dispersion ralation

E

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

1

1 1 1

1

     Write                     (144)

  

  

  

   
   

      
   

  


xx xy xz kx

yx yy yzk k ky

zx zy zz k

E

E

E

       J E

1

     Without loss of generality (for a plas
  zx zy zz kzE

ma isotropic in ,  ), we let

                                                                                (145) x z z

x y

k kk e e

1

     Sub. (144) and (145) into the field equation:

                 (  kk k E
2

2 21 1
4)                                  (125)

the components are

    k k
i

c c
x y z

E J

22 2

2 2

2 2

1 1 1
4 4 4

4 4 4

the , ,  components are

(1 ) ( ) 0

(1 ) 0

  
   

  

       zz
xx xy xzkx ky kz

k k ck c i i i

k ci i i

x y z

E E E

E E E




 (146)

2

2

1 1 1
4 4 4   (1 ) 0

(

  
    



    

z

yx yy yzkx ky kz
k ci i i

k k c

E E E
2 2

2 21 1 1
4 4 4) (1 ) 0  
     




      
 zx zy zzkx ky kz

k ci i iE E E

(146)
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    (146) can be written 
   D D D E

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

1

1 1

1

  0   or                                    (147)

   
   

     
   
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D E
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k k ck c i i i

i 2 2

1
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 

kx

k c i i
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2 2 2
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1
4 4 4

              1      0  (148)

               1

For (147) or (148) to be solvable the determinen

  
  
   

  

   

    
   
        

z

yx yy yz ky

zx zy zz kz

k k c k ci i i

E

E

t of must vanish:

D    For (147) or (148) to be solvable, the determinent of  must vanish:

                  0                                           (149) 
 xy

yy

xx xz

yx yz

D D D

D D D

D

D

     (149) is the most comprehensive form of the dispersion relation.

yyyx yz

zx zy zzD D D
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     : In (149), the conductivity tensor  is still 
unknown To obtain the specific expression of the dispersion relation


Particle dynamics 

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

unknown. To obtain the specific expression of the dispersion relation, 
we need to work on the equations for particle dynamics. 

   
0

  Define  and rewrite (123) and (118) in terms of 

1

  


t t

q 0

01 1 1

[
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z zv v

x x
v v

v v


x

( ) cos( ) cos

( )

 
   

 

        
    z

y y

z v z

v v
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     Using  [(145)] and the orbit equations in (151), 

we may write [ ( ) ] [ ( ) ] [ ( ) ]  
 

   
x z zk k

k x x k z z

k e e

k x x

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

we may write   [ ( ) ] [ ( ) ] [ ( ) ]

            [ sin( ) sin ]
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( )sin     Using the Bessel function identity: ,
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0 0     Since ( ) ( , )  and ( ), ( ) are constants 

f th ti h ( ) ( )
          

 
z z zf f v v v v v v

f f

v
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
0 0

0 0of the motion, we have     ( ) ( , )

1                                     
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From (113) and (120) we obtain Then
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    From (113) and (120), we obtain  . Then,      
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0 0

     (153) and (155) give  
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
     Combining (154) and (156), we obtain  

zv
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[ ]
     Combining (152) and (157) gives  
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[ ]

     Sub. (160) into (159), we obtain  
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            (162)
     This is Eq. (8.10.8) in Krall & Trivelpiece. Note that all Bessel  

functions have the same argument: .


 

k v
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     : The perturbed current [(121)] can be written: 
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The conductivity tensor

f d d d d fJ

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
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     By (144),  can be expressed in terms of the conductivity tensor
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1Then,  is the coefficient of the sum of all  terms in (163) 

[which can be found from (162) and (158)]:
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     Using the Bessel function identities: 

2
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where we see that only the 1 terms in the  sum will survive 
the -integration. 

  s n s
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     Carrying out the -integration in (168), we obtain 
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     : Rewrite the dispersion relation:  The general dispersion relation

D D D
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     By similar method, we obtain the other elements of the dispersion
t Th l t lt ( K ll & T i l i 405 406)
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tensor. The complete results are (see Krall & Trivelpiece, pp. 405-406)
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Waves Propagating Along B0ez (k = kzez):
The dispersion relation for waves propagating
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xe
The dispersion relation for waves propagating 

along B0 = B0ez may be obtained by letting 
k  0 in (171)-(179). 
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     In (171)-(180),  the argument of all Bessel functions is .   
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Using (183) and (184), we find that in the limit 0,
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     Thus, the dispersion relation (149) reduces to
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2 2     Rewrite the dispersion relation:    ( ) 0        (190) zz xx xyD D D
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     Several modes are contained in (190). To find these modes, we
assume, for simplicity, that the plasma is isotropic in all 3 d

0 0

imensions, 
i.e. ( , ) ( ). zf v v f v0 0i.e. ( , ) ( ). 
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     The integral in (191) can be written 
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which agrees with the electrostatic dispersion 
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relation [(135)] for an  

unmagnetized plasma This is because electrostatic waves involve

0

unmagnetized plasma. This is because electrostatic waves involve  
particle motion along , and hence are unaffected by the magnetic 
field. The mode considered below will prov

B
ide an opposite example. 39
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     (190) gives two other solutions:          
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and  [see (187)]. Then, 
      

 
xz zx zy zy xx yy

yx xy

k D D D D D D

D D

1 1

for solutions (193) and (194), 

    
(147) i 0 (195)

      
      

xx xy xx xykx kxE ED D D D1 1

1 1

1 11 1

(147) gives     0     (195)

0

                

  
xy

y ykx kx

yx yy xy xxky ky

xx xy kx kykx ky
D
D

E ED D D D

E ED E D E 
 1 11 1

1 1 1

    
0

    

xxxx xy kx kykx ky

xy xxkx ky kx

D
D E D E E 1

              (196)





xx
xy ky

D
D E

40



1 1
R it (196)

  


xy

xxkx ky
D
DE E
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1 1

     Rewrite:                                                   (196)

     The following information about the modes in (193) and (194) can 







xx

xx
xy

y

kx ky
D
DE E

be immediately learned fr
2 2

om (196):

     (1) The 2 equations in (196) are consistent only when ,

or when (190) is satisfied This is a specific example which shows the

 xx xyD D

or when (190) is satisfied. This is a specific example which shows the
dispersion relation as the condition for solvability of field equations. 
We also find that (196) gives the  amplitude (not the absolute 
values) of the field components as is typical of solutions

relative
linearvalues) of the field components, as is typical of solutions. 

     (2) The fields in (196) are in the

linear 

1 1

 -  plane. With and

( , )  [see (120)],  we find 



z z

z
k

i t ik z

x y k

t e

k e  

E x E

11                         ( , ) 0. 

     Thus, the two solutions represent electromagnetic waves.

     k
z

z z
i t ik zt ik eE x e E

41

1 1     (3) Either of the equations in (196) gives . Hence,  xy

xxkx ky
D
DE E
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2

1 1
1 1

1 1

   for  0 [ ]    (198) 
    

for  0 [ ]    (199)

          

xx xyky x yk
kx k

xx xy x yky k

iE D iD E i
E

iE D iD E i

e e
E

e e

2 1/ 22
11where ( kxkE E E2 1/ 2

1 ) .

     Thus, both waves are circularly polarized*. Without
loss of generality (explained later), we assume positive

ky
 

1E
x

y

0

g y ( p ), p
 and . At any fixed position , the field in (198) 

rotates opposite to the g
 B z

0 zyration of electrons in . 
In another view it rotates in the direction of left-hand

B e
                                              1 ( )

      left circularly
        polarized   

  z
k x y

i t ik zeE ie e

x

0 z

In another view, it rotates in the direction of left hand 
fingers if the thumb points to the direction of ,  
hence the name "left circularly polarized wave". In
contra

B e

st (199) gives a "right circularly polarized

1E
x

   y

contrast, (199) gives a right circularly polarized  
wave" rotating in the same sense as the electrons.

: The  polarization is due to .xx yy*Note circular D D

               
1 ( )

     right circularly
        polarized  

  z
k x y

i t ik zeE ie e
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0              (193)
     Turning to the dispersion relations: 

0 (194)

 



xx xyD iD

D iD
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2 2 2 22

g p
0              (194)

      and  are given by (186) and (188), respectively.

11 

  



xx xy

xx xy

z

D iD

D D

cD k 2 (186)  
2

2 2
1

2
4
11

  
 


 


 

    p
z

xx n
cD vk 2

2 2 2

1

1 1
2

4

   (186)

1                 (188)



 



  




 



 

    


     
 p

n

xy n n

v

D v vi

2 2

2
2 2 2

2

1 1

2 1 1

4

1 [






 
     

 

 

 

     

p

p

y n n

z
xx xy n n

cD iD v vk

2 ]2                                                      
n

v 2

2 2 2
2

1 1
2

1
    1 0                 (200)

]










 








 





    p

n

z
n

v

c vk

2 2 2
2

2

1

      Similarly,

      1 0                  (201)




  


  

     p
z

xx xy n
cD iD vk
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           Using (181) and (182), (200) and (201) can be written

 f f
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0 0
2 22 2 2 2 3

( )1
2 0 (202)

[l ft i l l


 

 

 
   


 

  
      z

z z z z

z p z
z z

f fk v k v
v v

k c v dv dvk v
l i d ]





                                           [left circularly p

0 0
2 22 2 2 2 3

( )

olarized wave]

1
2 0 (203)

 
 

   




         z

z z z zf fk v k v
v v

k c v dv dv2 0 (203)

                                          [right circularly polarized wave]

These two disp


 

         



 z p z
z z

k c v dv dvk v

ersion relations in their present forms allow an          These two disp

0

ersion relations in their present forms allow an  

      anisotropic  [e.g. (103) and (104)], which may lead to an 
      instability (an example will be provided at the end of this section). 

F

f

2 2or an isotropic plasma ( ) [e g (102)] e ha ef f     F 2 2

0 0
2 2

0 0or an isotropic plasma, ( ) [e.g. (102)], we have

     . Then, (202) and (203) reduce to 
 

 



 
 

 



z

z

f f
v v

f f v v
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0

2 2 2 2 2




 
f
v




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2 2 2 2 2 0           (204)

                                   [left circularly polarized wave]


 
   


 

   



 z p z
z z

v
k c v dv dvk v

f





 0

2 2 2 2 2 0           (205)




 
   


 


    z p z
z z

f
v

k c v dv dvk v
[right circularly polarized wave]





             

02 2 2 2

                     [right circularly polarized wave]

      Integrating by parts with respect to , we obtain  

2 0 (206)  





 

v

f
k c v dv dv




02 0          (206)

                      



 

         z p z
z z

k c v dv dvk v

02 2 2 2

             [left circularly polarized wave]





  

f 02 2 2 22 0          (207)

                                  [right circularly polarized wave]



 

     
    


 z p z
z z

f
k c v dv dvk v
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(208)

     The basic properties of the waves can be most clearly seen in a 
1ld l S l t ( ) ( ) f
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3

0

0 0

2

0 0

2 (208)1cold plasma. So, we let          ( ) ( )                   

     :  1




 

 





 


 





    

z

z

f v vv

Note f d v v dv d dv f

     Then

2 2 2
2

left circularly polarized]      (209)

, (206) and (207) give

0 [
 


   
 p

zk c

2 2 2
2

right circularly polarized]    (210)

         

0 [













 

 

    





z

p
zk c

As an exercise in kinetic treatment of plasma waves, we have
gone through great length to arrive at the above dispersion relations
for a cold plasma. In fact, (209) and (210) can be readily derived



o a co d p as a. act, ( 09) a d ( 0) ca be ead y de ved
from the fluid equations [see Nicholson, Sec. 7.10; Krall &
Trivelpiece, Sec. 4.10].
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0

     Assume the plasma contains only one ion species of charge  and 

I ll ti ( ) i th i f d
q B

e

B

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

0
0

0

mass . In all equations, ( ) carries the sign of  and .

To be more explicit, we define the notations: ;  


 

   

i

e ie

q
m c

e B e
m c

m q B

0

Then (209) and (210) can be written
i

B
m c

22
2 2 2

     Then, (209) and (210) can be written  

0   [left circularly polarized]   (211)[ ]


   


     


z
pe pi

e i
k c

22
2 2 2

   

0  [right circularly polarized]  (212)[ ]


   


     

z
pe pi

i

e i
k c

Each equation can be put in the form of a 4th order polynomial in      Each equation can be put in the form of a 4th order polynomial in .
So, for a given , there are 4 solutions for . However, with  changed
to ,  one equation become the other equation. Thus, a negai


 


zk

tive-
l ti f ti i id ti l t iti l ti f th th


solution of one equation is identical to a positive-  solution of the other 
equation. So there must be 2 positive-  and 2 negative-  solutions for 
each equation. This results in a total of 4 ind


 

ependent solutions. 47

0     Furthermore, with a change of the sign of , the two equations
also reverse So without loss of generality [confirming the statement

B
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also reverse. So, without loss of generality [confirming the statement 
following (199)], we may restrict our consideration to positi

0 0

ve-  
solutions for a positive  (i.e.  is in the positive  direction).

The 4 independent positive solutions of (211) and (212) in a




B zB

0

     The 4 independent, positive-  solutions of (211) and (212) in a
positive  are shown in Fig. 1 or 2 in four branches, ran


B ging from 

very low to very high frequencies. Various waves in these branches
ill b l ifi d b l di h i f

Fig. 2Fig. 1

will be classified below according to their frequency range.
(See Nicholson, Sec. 7.10 & 7.11; Krall & Trivelpiece, Sec. 4.10).

(right circularly polarized)

2


e

g

(right circularly polarized)
e

2

1

        zk
(left circularly polarized)

(right circularly polarized)

i

1 

        

(right circularly polarized)

zk

whistler

(left circularly polarized)
i

48



    
For high frequency waves ( ) the ion terms in (211) and 
A. High frequency electromagnetic waves - Faraday rotation   

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

2
2 2 2

    For high frequency waves ( ),  the ion terms in (211) and
(212) can be neglected. Thus, 

0   [left 








  

 i

z
pek c circularly polarized]         (213)




[
           

z
e

2
2 2 2

y p ] ( )

0  [right circularly polarized]        (214)


 



   

z
pe

e
k c

Fig. 2Fig. 1

    The high frequency branches are plotted in the top two curves 
in Figs. 1 and 2. 

( i ht i l l l i d)

2


e

 

g

(right circularly polarized)
e

2

1

g

       zk
(left circularly polarized)

(right circularly polarized)

i

1  

        

(right circularly polarized)

zk

whistler

(left circularly polarized)
i
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  2

     Setting 0,  we find the cut-off frequencies of the two branches:
 

zk

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

 1

2

2
2                                                              (215)4 2

     The 2 figures differ in plasma densiti

 
 

  e e
pe

es. When 2 ,  we  pe e

0
2 2 2

1 1have  (Fig. 1). When 2 ,  we have  (Fig. 2).

     As 0 ( 0), the 2 branches coalesce with the same cutoff

frequency and the same dispersion relation

  

  

     
  

 

e pe e e

eB

k c 2 0,frequency  and the same dispersion relation   pe zk c 0,

consistent with (143).
pe

Fig. 2Fig. 1

(right circularly polarized)

2

1
e

g

(right circularly polarized)
e

2

1

g

        zk
(left circularly polarized)

(right circularly polarized)

i

1

        

( g y p )

zk

whistler

(left circularly polarized)
i
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     As shown in Figs. 1 and 2, at a given frequency, the right circularly
polarized wave has a greater phase velocity than the left ciucularly

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

polarized wave has a greater phase velocity than the left ciucularly 
polarized wave. Hence, if a linearly polarized wave is injected into 
the plasma, it may be regarded as the superposition of a right circularly
polarized wave and a left circularly polarized wave of equal amplitudepolarized wave and a left circularly polarized wave of equal amplitude,
each traveling at a different phase velocity. The combined wave is still
linearly polarized but its  field (i.e. its polarization) will rotate as the

t Thi i ll d th F d t ti d i l it d
E

wave propagates. This is called the Faraday rotation and is exploited 
for plasma density measurement because the degree of polarization 
rotaion depends on the plasma density.
     In an unmagnetized plasma, there is no electromagnetic wave 
below the cutoff frequency . A magnetized plasma, howpe ever, 
can support other branches of electromagnetic waves at frequencies
below the cutoff frequencyies of the top two branches,  as discussed 
below.

51

     B. Intermediate frequency electromagnetic waves - whistler wave   
and electron cyclotron wave

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

     In the intermediate frequency range, we still have , hence 
(213) and (214) still ap

  i

          and electron cyclotron wave

ply. (213) has no other solution in this range. 
(214) has a solution marked as "whistler" & "electron cyclotron wave"(214) has a solution marked as whistler  & electron cyclotron wave  
in Figs. 1 and 2. The electron cyclotron wave can be exploited for 
electron cyclotron resonance heating since it has the same frequency 

th l t l t f d it t t i thas the electron cyclotron frequency and it rotates in the same sense as 
the electrons. 

Fig. 2Fig. 1

(right circularly polarized)

2

1
e

g

(right circularly polarized)
e

2

1

g

        zk
(left circularly polarized)

(right circularly polarized)

i

1

        

( g y p )

zk

whistler

(left circularly polarized)
i
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     For the whistler wave, the group velocity ( / ) increases
as increases When a lightning stroke on earth generates a pluse of




g zv d dk

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

as  increases. When a lightning stroke on earth generates a pluse of 
EM waves containing many frequencies, the pulse may reach the 


ionosphere and propagate along the earth magnetic field as a whistler 
wave Some the wave will eventually leave the ionosphere to impingewave. Some the wave will eventually leave the ionosphere to impinge
on the earth, where it can be received by a radio and generate a sound 
like that of a whistle, hence the name whistler wave. The radio signal
h d ti l th th i i l l b t thas a duration longer than the original pulse because components at
different frequencies travel at differnet  in the iongv osphere. 

Fig. 2Fig. 1

(right circularly polarized)

2

1
e

g

(right circularly polarized)
e

2

1

g

        zk
(left circularly polarized)

(right circularly polarized)

i

1

        

( g y p )

zk

whistler

(left circularly polarized)
i

53

     C. Low frequency electromagnetic waves - Alfven wave and ion  
l

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

     As the frequency gets lower, the ions participate more and more.
At frequencies near or below ,  the ionsi

         cyclotron wave

 play a major role and we 
must use (211) and (212). In the vicinity of , (211) gives the low-
frequency end of the whistler wave (slightly modified by the ions), 
and (212) gives a new wave called the

i

 ion cyclotron wave. 

Fig. 2
2

Fig. 1

(right circularly polarized)

2

1
e

(right circularly polarized)
whistler

e

2

1

        zk
(left circularly polarized)

i

        zk
(left circularly polarized)

i
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1

     When , we have 
1 1 1(1 ) (1 ) (216)


 



 
 i
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1

, , , , ,

 1 1 1             (1 ) (1 )                    (216)

  1 1 1             (1 ) (1 )                     (217)

  


 




     

     








e i e i e i e i e i

i i i i i, , , , ,

     Sub. (216) 
e i e i e i e i e i

22

and (217) into either (211) or (212), we get the same 
results (i.e the two low-frequency branches merge into one):  

2
22

2 2 2
2 2                   ( ) 0,                                   


     z

pe pi

e i
k c

2 22

(218)

Since we neglect the electron term to get
 

pe pi pi
2 2

2 2 2 2
2 2 2 2 2 2 2 2 0

2 2 2

Since ,  we neglect the electron term to get

4
         0        (219)

 
   

   

     



z z

p p p

ee i i

pi i i
n e m c

k c k c m e B

0
2
0

2 2 2
0

24

( )






z z

i i

ii

B
n mc

m e B
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0    Defining a speed  (called the Alfven speed) in terms of AV B

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

0

0

and the ion mass density :  

                                ,                                              (220)
4









ii i

A
i

n m
B

V

we obta

i

2 22 22 2 2 2
2 2 2

in from (219) the diepersion relation of the Alfven wave: 

          0   or                        (221)
1 /

     Az
z

k Vck c
V V2 2 21 /

                           

A A
z V V c

Fig. 2Fig. 1

(right circularly polarized)

2

1
e

(right circularly polarized)
hi l

e

2

1

        zk
(left circularly polarized)

( g y p )

i

1

        zk

whistler

(left circularly polarized)
i
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6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

: We first develop the useful concept of
magnetic pressure and magnetic tension. Using

Physics of  the Alfven wave     

4
magnetic pressure and magnetic tension. Using 

the static law:  (approximately 
applicable at very low frequencies), we may

  cB J
 

express the magnetic force density (force perf

if

-field 
lines
Ba solenoid1 1

4

express the magnetic force density  (force per 
unit volume) entirely in terms of the -field:  

         ( )                     c

f
 B

f J B B B
a uniform
electron beam( ) ( ) ( ) ( ) + ( )        a b a b + b a + a b b a

2 1
8 4           ( )                            

   
B B B                                   (222)

B
-field 

li
B

magnetic tension force density, 
as if a curved -field line
tended to become a straight line

B
magnetic pressure
force density

 

B

uniform current

linestended to become a straight line.

     In regions where 0, we have 0,  i.e. the 
pressure and tension force densities cancel out.

 J f
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     Return to the Alfven wave. Since the two lower branches merge 
at , the left and right circularly polarized waves have the  i

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

at , the left and right circularly polarized waves have the
same phase velocity. So a linearly polarized wave will remain linearly
  i

polarized (no Faraday rotation). The figure below shows a linearly
polarized wave with in the direction and in the directiony xB E1 1polarized wave with  in the -direction and  in the -direction.
     Since ,  ,  the electron and ion behavior can be describe   i e

y xB E

01

d
by their  drift motion  (same speed and same direction). The

l t i fi ld b th th l t d i t d ift i


E
E B

1

1

wave electric field  cause both the electrons and ions to drift in 
the -direction, while the wave magnetic 
field  bends th


xx

yy

E
y

B

e

e 0e external  in the B
total -field Bz

direction of the plasma drift (see figure).
A quantitative analysis (Nicholson, 
p. 163) shows that the field lines and 

E BE B
    Linearly polarized

y

p )
the plasma move together as if the field 
lines were "frozen" to the plasma (or the plasma frozen to field lines).

1 1 1 1;  x yx yE BE = e B e
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     On the other hand, when the magnetic field lines are bent, there
is a "tension force density" on the plasma which acts as a restoring

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

is a tension force density  on the plasma, which acts as a restoring 
force to drive the plasma back so that the field lines (which are frozen 
to the plasma) become straight. As the field lines are straightened, the 
momentum of the plasma carries the field lines further back thusmomentum of the plasma carries the field lines further back, thus
bending the field lines again, in the opposite direction. The tension 
force then acts again to start another oscillation cycle.  

N t th t h d h ll titikk
total -field Bz

     Note that we have assumed ; hence, all quantities vary 
only with the -variable. This implies 
that, at a given

 z zk
z

k e

01 time, the  xxE e B

E BE B
    Linearly polarized

y
drift in the -direction has the same 
speed at all points along . Thus, 
the drift motion will not compress/

y
y

1 1 1 1;  x yx yE BE = e B edecompress the plasma to produce 
a density variation. The plasma remains uniform in the processes.

59

     : 

Th d ift th l l t d i t i

Alternative derivation of  the Alfven wave dispersion relation

E B

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

1     The drifts cause the plasma electron and ions to move in

the same direction with the same speed, hence generating no curren

E B 

1

t.
However, there is another drift motion due to the time variation of ,E

0 0
1

1
2 2

2 2

which results in a polarization drift current given by (2.43) of Sec. 2.5:

                      
 m m

p k
i tc i c

tB B
e

E
J E  zik z

0 0

0 0

0
12

2
       or        ,                                                 (223)

where is the plasma mass density Note that the







 i i

m
pk k

i c
B

n m n m

J E

0 0where  is the plasma mass density. Note that the 
polarization drift speed is much greater fo

 m i i e en m n m
r the ions than electrons.

      plays a critical role in the Alfven wave. It generates the wave 

ti fi ld d h th ti t i f d it I
pkJ

B1magnetic field  and hence the magnetic tension force density. In 

fact, we may derive the dispersio
kB

n relation based on (223).
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1 1 1 12

2
    Sub.  [(223)], , and      m

x z zk pk k k kx
i c

B
E kJ J E E e k e

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

2

2 2

0
1 1 1 1

1 1 1

2

4

into the field equation derived earlier: 

                   ( )                              (125)      

k pk k k kx

k k k
i

c c

B

k k E E J1 1 1

we obtain   

 

k k kc c

0
2 2

2
1

22 4                   ( ) 0,     m
z xkxc B

k E e
0

2 2 2 2 2

2

which gives the same dispersion relation as (221):

                        0       z

c B

c
V

k c 2
AV
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0

2 2

  ( 0)z zB k     Waves propagating perpendicular to e :

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

2 2
0 0

0 0
2 2

     Assume isotropic distribution,  ( ), we have 

. Then, with 0,  we obtain from (173)-(178)

 

 


 
 

 

z

z
z

f f v v
f f

k
v v

f
22 2


   


  pxz
nD v dvk

02
2

0
                (224)



 
 






 


  
z n

z
z

n

fv J
vdv n

fdJ 0
22

0
2 ( / )

2     (225)





 


 


  




   



  p

z n
z

yz z
n

fdJnv v J
d k v vD v dv dv n

f

i

02
2

2
0

2 2                  (





 


 





 



     p

z n

zx z
n

fv J
vnD v dv dv nk 226)

fdJ 0
2

2
0

2 ( / )
2   (227)





 


 


   




 

     p

z n

zy z
n

fdJnv v J
d k v v

D v dv dv n
i
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Factoring out the -integrals from (224) and (225), we have 


z

f

v     

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

0
2

0
0

1 1
2 2

                   ,  

                                     ( ) 0


















  





yz xz z z
z

z z

f
v

f

D D dv v

dv f v02 2 ( )

     Factoring out t

  z zzv f

0
2

he -integrals from (226) and (227), we have

0 
 

z

f

v

D D dv v 2

0

                   ,  0 

because  is an even function of .

     Thus,  and  (147) reduces to


 
 

  

zx zy z z

z

yz xz zx zy

v
D D dv v

f v

D D D D, ( )

                    

yz xz zx zy

D 1

1

0

0 0                           (228)

  
  

  

xx xy kx

yx yy k

D E

D D E1

1

0 0 ( 8)

0 0

  
  
    

yx yy ky

zz kz
D E
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2 0
2 2 2

2

2
2

where

1 2 (229)



 

   
    

p
xx

nD v dv dv J
f

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

220

0

2
2

1 2   (229)

2










 


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

 


 









 




  

     

  

  

p nxx z
n

p
xy yx z

n

k

n v
k

D v dv dv Jn v

D D v dv dvn
i

(                                                                  

 


 n

n

n
dJ

d k vJ
2
0

2 2
2

2
/ )

2

 (230)
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

 




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p

v
c

f
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2

2
2

0
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2
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                                                                 [ ]    (231)




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

  

 

 




    





  
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dJ
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2
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21 
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 



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zz

n
D n

ck
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2 02
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2     (232) 

In (229) (232) the argument of all Bessel functions is /


 

 







   nz z
z

v dv dv v J
v

k v

f

     In (229)-(232),  the argument of all Bessel functions is / . 
In the limit of a cold plasma ( , 0),  we only need to keep the  
lowest-order, non-van

 




z

k v
v v

ishing terms in the sum over . n 64



0 0

( 1)1     Using (183): lim ( ) ( ) ; lim ( ) ( ) , ! 2 ! 2  
  

x x

nn n
n n

x xJ x J xn n

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

0 0

2

! 2 ! 2
we find that the lowest-order, non-vanishing terms for  are the 

1 terms. Thus, the sum over  in  is



 

 

x x
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n n
D

n n D

2 2 f2
          2
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p v dn 2
0

0

2 2 2
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1                             for a cold plasma:  ( ) ( )  

                                 
2 (
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 
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f v vv
                                              (233)
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2

     Sub. (233) into (229), we obtain
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2 2

2
                           1                                         (234)

     Similarly, the lowest-order, non-vanishing terms for ,  , and






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D Dy g xy yx
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 are also the 1 terms, and we obtain

                                                (235)
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     (236)


2 22

     The lowest-order, non-vanishing term for  is the 0 term, 

which gives 1 (237)



   p

zzD n

D
ck
2 2which gives        1                                  (237) 

       zzD
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1
1

   
    (228) gives 0     and  =0        (238)

  
  

xx xy kx
zz k

ED D
D E

ED D

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

2

1
1

( 8) g ves 0 a d 0 ( 38)

     Using (234)-(237), we find from (238) the dispersion relations:
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and                    1 0                               (240)
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     : We have assumed 
[(145)].



 x z zNote k kk e e
 Thus, with 0,  (239) and (240) 

apply to waves with This explains



zk
kk e

ye

k
ze0Bapply to waves with . This explains 

why  and  are unequal, although the 

system is isotropic in  and 

 x

xx yy

k
D D

x y

k e
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22 2

     : (see Nicholson, Sec. 7.9 for a fluid treatment)Ordinary mode
k
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
22 2

2 2     Rewrite              1 0                          (240)

     Since ,  we may neglect 






 

 
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

p
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pe pi
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ion and get

                                  0                                   (241)

Thi i th di i l ti f th di d Th di

   pek c

     This is the dispersion relation for the ordinary mode. The ordinary 

mode is a pure electromagn

0 0

etic mode, which propagates in a direction
perpendicular to , with the electric field parallel to . Thez zB Be e

xe

k
0B

dispersion relation (241) has the same form as that of electromagnetic 
waves in an unmagne

0

tized plasma [see (143)] 
because the electron motion is along  and zB e

ye 1E
ze0B

hence is unaffected by the external magnetic 
field. 
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  

xx yy xy
     General properties of  modes in D D D

ED D
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2

1

1

  
     Rewrite the field equations: 0           (238)

and the dispersion relation: 0

  
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xx xy kx

xy yy ky

xx yy
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D D D (242)and the dispersion relation:        0           xx yy xy
D D D

1 1 1

         (242)

     (238) gives the following information about the modes in (242):

     (1)  [= + ] of these modes lies on the - plane. x ykx kyE E x y E e e

     (2) Under (242), either equation in (238) give

y

1 1s  

     From (239), we see that  is real and
is imaginary Thus and differ
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xxkx ky
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D
DE E

D
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1 1

 is imaginary. Thus,  and  differ

by a factor " ", implying  and 

are 90  out of phase while having

xy kx ky
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D E E

i E E
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p g

unequal amplitudes ( xE 1
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),

i.e.  is elliptically polarized.

 yE
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An ellipse on the -  plane
traced by the  vector

x y
E 69

1 1 1

(3) As shown in the figure, we have
= + k k

     
E EE e e
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xe
1 1 1+

             

     Thus, in general, these modes are 
i h l i ( )








x y

x

kx kyE E

k

E e e

k e

ze0B

k

1E

1

1

neither electrostatic ( 0) nor 

electromagnetic ( 0), except 

at particular
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 frequencies (such as 
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1

An ellipse on the -  plane
traced by the  vector

x y
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q (
) or wave numbers (such as ). Consider, for example, 

the relative amplitude of  and  in the relation:  
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     If, fo
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1 1r some  or , we have 0. Then,  and 

the mode becomes electrostatic If 0 at some or then




  


xx xkxk D E

D k

E e

1 1

1

the mode becomes electrostatic. If, 0 at some  or , then 

 and the mode becomes electromagnetic. In either case, 

 also becomes linea
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

xy

yky

D k

EE e
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: (see Nicholson, Sec. 7.9 for a fluid treatment)
     At high frequencies, we may neglect the ion contribution. Then,
     Extraordinary mode

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)
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t g eque c es, we ay eg ect t e o co t but o . e ,
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(239) can be written  
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where, as before, . (243) gives
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     After some alg

 ( )( )
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2
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( ) ( ) identical to
  = ,    (245)

(7.178)

where called the upper hybrid frequency is defined as

     
   




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where , called the upper hybrid frequency, is defined as  

                 

UH

2 2 2                                                         (246)   UH pe e
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2 2 2 2
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2( )
Rewrite (245)

  


  
 pe ek c 2 2     Rewrite                                          (245)

     This is the dispersion relation for the extraordinary mode. It has 
two branches with the following limiting

   UH

k c

 frequencies: 



0

1

2

22

/( )                                                                  

 0 ;   4 2
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e B m c

pek k
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UH
2 ordinary mode

     Thus, as shown in the figure, 
the frequency of the l



1

ower branch
goes from  to  and the  UH

1
pe

k

extraordinary mode
1

2

1 1

g
frequency of the upper branch goes 
from  to infinity. Note that at 

we have 0 Hence [see (238)] and the


   

UH

D EE e1 1,  we have 0. Hence,  [see (238)] and the

wave is electrostatic (called upper

 UH xxxxD EE e

1 1

hybrid resonance). As ,  
we have 0  and the wave is electromagnetic.
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     : (see Nicholson, Sec. 7.12 for a fluid treatment) 


Magnetosonic Wave
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Rewrite  0 (239)
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     At very low 
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must retain the ion terms in (239). Under the condition: 
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     Thus, (239) gives  0. Because 0,  we have


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22 2

2 2                               1 0                                (247)

     (247) has a form identical to (219) if  in (21



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i
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9) is replaced with .k
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Thus, the solution is simply (221) with  changed to :

                                                                           (248)
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where the Alfven speed
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  is defined in (220) as 
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     (248) gives the dispersion relation for the 
magnetosonic wave. Because 0, it h


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electric field . Hence, 0 and 

the wave is electromagnetic with  .
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01

     : Like the low-frequency Alfven wave, particle
dynamics can be described by 2 types of drift motion. The 

A physical picture
E Be e

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

01

1

dynamics can be described by 2 types of drift motion. The 

drifts move the plasma in the -direction. Since  ( e ) al


 

y z
ik x
E B

x E

e e

so 
varies with , the drift motion will compress/decompress the plasma,
resulting in a density variation along On the other hand the wave

x
x

01

resulting in a density variation along . On the other hand, the wave
magnetic field , when superposed with  will cause a z z

x
B Be e similar 

density variation of the magnetic field lines (see figure). The field
lines are again frozen to the plasma, similar to the Alfven wave.lines are again frozen to the plasma, similar to the Alfven wave. 
However, the restoring force (thus the oscillation mechan

2
ism) is now

provided by the magnetic pressure force density: / 8  [(222)].

As in the Alfven wave there is

B
xe

1

      As in the Alfven wave, there is
also a polarization drift current in the

-direction due to the time variation 
of .y

y
E e This current generates the

x

eB

k
1B

1of . yE e

1

This current generates the

wave magnetic field , hence 
the magnetic pressure.

zB e

ye

ze
0B

1E
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    :

Th l i ti d ift t i i b

Alternative derivation of  the magnetosonic wave dispersion relation

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

0 0
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    The polarization drift current is given by 
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    Sub. , , and   into
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which gives the same dispersion relation as (248):
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     :
The dispersion relation for the magnetosonic wave:
Asymptotic behavior of  the magnetosonic wave dispersion relation

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

2 2 2 2 2

     The dispersion relation for the magnetosonic wave: 

                                 /(1 / )                       A Ak V V c
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          (245)

is valid under the condition . It breaks down as . To    i k
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find the behavior at , we assume  and . 
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which implies  [see (238)]. Hence, the wave is electrostatic.
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     (247) gives  
                          if   





 





 

pe e

e

2 2
2 2 2 2

2 2 2         [fo,
 

  

 
      LH

p p
e i

pe pe

e ei i

e
r ]        (248)

where                                                                   (249)

  
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ordinary mode

 extraordinary mode

2 2 2

( )

is called the lower hybrid frequency.

     This justifies the assumption:

LH e i

2

         
y

     

1

UHpe

2

magnetosonic wave

2 2 2         and    i
2

we made in obtaining (248).

     Finally, all the perpendicular

e

k

         LH
magnetosonic wave

0

y p p
modes ( ) discussed so 
far are summarized in the figure.
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     : 
     (i) We have covered a number of the most familiar modes in a

Discussion
6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

( )
uniform plasma in the framework of the kinetic theory. These modes 
are treated in Ch. 7 of Nicholson by the fluid theory. However, some 
other familiar uniform-plasma modes have been left out for exampleother familiar uniform plasma modes have been left out, for example,
the Bernstein modes (Krall & Trivelpiece, Sec. 8.12.3). 
     (ii) We have only considered waves either along or perpendicular 
to In practice waves can exist at any angle to (NicholsonB Be e0 0to . In practice, waves can exist at any angle to  (Nicholson, 
p. 165), with complicated expressions and mixed properties. The 
general dispersion relation (149) can be the basis fo

z zB Be e

r a detailed study 
of such uncovered uniform plasma modesof such uncovered uniform-plasma modes.
     (iii) There are also modes which are not contained in (149). For 
example, an inhomogeneous (equilibrium) distribution in density or
t t i t d d h d ift (Ni h ltemperature introduces new modes, such as drift waves (Nicholson, 
Sec. 7.14; Krall & Trivelpiece, Secs. 8-15 and 8.16). Plasmas in 
     79

some devices (e.g. tokamaks) are futher complicated by a complex 
magnetic field configuration Such plasmas are usually the subjects

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

magnetic field configuration. Such plasmas are usually the subjects 
of research papers.
     (iv) Modes considered in Sec. 6.12 are for a cold plasma. Basic 

ti d th d l i h i l l hibit d iproperties and the underlying physics are more clearly exhibited in 
this limit. However, cold modes are stable because there is no free 
energy to drive an instability. In the next topic, we will demonstrate 
h h d b bl i i i lshow how a mode can become unstable in an anisotropic plasma.

     (v) The relativistic Valsov equation can be derived by the same 

steps as in the derivation of the Vlasov equation in Sec. 6.1. For the 

0 0 0case we considered ( 0, ),  the relativistic factor  is 

a constant of the motion in zero-order orbit equations. Hence, the 

derivation of the relativistic dispersio

  zBE B e

n relation takes exactly the samederivation of the relativistic dispersion relation takes exactly the same 

steps which lead to (171)-(182). In Special Topis I, we will derive

the relativistic Vlasov equation and consider a relativistic instability. 80



     -

The dispersion relation for "right circularly polarized waves" is

A Slow Wave Instability on the Electron Cyclotron Wave :

6.12 Linear Vlasov Waves in Magnetized Plasma (continued)

2 2
0 0

2 2 2 2 3

The dispersion relation for right circularly polarized waves  is

    2
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p k v

0
2

2 2 2

     At high frequencies, we may neglect the ions. Then, for a cold 

plasma, (203) reduces to 0, [ ] (214)


     pe e B
m ck cplasma, (203) reduces to     0,   [ ]    (214)

which gives the 2 "right circularly polarized" bra

  
ee

ez m ck c

nches in the figure.
     Below, we will show that the

(right circularly polarized)

2


e

"electron cyclotron wave" portion 
of the lower branch can be 
destabilized by an anisotropy in 

       zk
(left circularly polarized)

(right circularly polarized)

i

1
velocity distribution, resulting 
in a velocity-space instability.

81

    For an anisotropic plasma, we cannot use (214), but must go back 
to (203) Again assume high frequency and neglect the ions (203)
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to (203). Again, assume high frequency and neglect the ions. (203)

gives  2
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     The integral  can be written 
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     Now, assume [see (104)]           (251)1 ( ) ( ),2    
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which represents a uniform distribution of electrons in random-phase
gyrational motion, with  and 0 for al



  zv v v l electrons. 82
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1 1     Then,                                     (252)2 2 ( )
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     Sub. (252) into (250), we obtain the dispersion relation: 
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which reduces to (214) as 0.
     The two right circularly polarized branches 

 v

0are plotted for 10  and 0.2 . The

top figure plots  (wave frequency) vs k .
The upp
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  

z

pe e
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v c

er branch is a fast wave ( / ), zr k c

  growth rate

pp ( )
while the lower branch is a slow wave ( /

). The bottom figure plots  (growth rate)
vs . We see that the slow wave is destabilized


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z

z

z

r

r

i

k
c
kvs . We see that the slow wave is destabilized

by the gyrational particles,
zk

 which feed energy
to the wave through cyclotron resonances. 83
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