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,     Rewrite     ( , , ) [ ( , , )( , )] 0                      (1)

We may derive the relativistic version of the Vlasov equation


   
t f t f tx px p x p x  p

     We may derive the relativistic version of the Vlasov equation 
from (1) by exactly the same method used in Sec. 6.1. 
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     Sub. (4) and (6) into (3), then sub. the result into (
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the relativistic Vlasov equation :
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which can be interpreted as "Along a particle's orbit in the -  space, 
the particl

       ctdt f t f f q fx Px p v E v B
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e density ( , , ) remains unchanged.f tx p 3

      We now have the following set of
self consistent coupled equations to describe a relativistic plasma:

Complete Set of Equations :
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1

self-consistent, coupled equations to describe a relativistic plasma: 
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     Each particle species, denoted by the subscript " ", is governed
by a separate Valsov equation, and  carries the sign of the charge.
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Th l ti i ti Vl ti b itt

 General Form of Equilibrium Solutions : 
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     The relativistic Vlasov equation can be written

            ( , , ) 0,                 (14)

where the time differentiation

   

     dd d
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follows the orbit of a particlewhere the time differentiation d follows the orbit of a particle. 

Thus, as in the nonrelativistic case, any function of constants of the 
motion ( , , ),  is a solution of relativistic Vlasov equation.i i

dt
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Goldstein,
     3. The relativistic motion of a charged particle (mass  charge )
in EM fields and is governed by Lagrange's equation: (

m; q
A
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Goldstein, 
Poole, & Safko, "Classical Mechanics," 3rd ed., Sec. 7.9)
in EM fields  and  is governed by Lagrange s equation: (
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           ,  1, 2, 3                                                        (15) 
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Heald & Marion "Classical EM
Radiation," 3rd ed., Sec. 14.10.
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A     As a side note, the constant of the motion in (16), ,  is 
a useful quantity to monitor the accuracy of numerical calculations of
relativistic p
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article motion in, for example, electromagnetic fields. 6



     
As in Ch. 6, we assume that the plasma is immersed in a uniform
Examples of Equilibrium Distribution Functions :  
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0 0

     As in Ch. 6, we assume that the plasma is immersed in a uniform 
external magnetic field along the -axis: , but here is no 
external e

 t zz BB e

0lectric field ( 0). 
An equilibrium solution ( ) must satisfy the zero-order
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     An equilibrium solution  ( ) must satisfy the zero-order 
relativistic Vlasov equation, which for our model is 
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0     Thus, any function of the form ( , ) satisfies (17), provided
that the total charge and current densi

  zf p p
ties of all species vanish so that 

there is no net self field at equilibrium. This in turn makes  and  
constants of the motion in the only field present: In fact the

  zp p
B e0constants of the motion in the only field present: . In fact, the

demonstration in (17) is
zB e

 redundant, since we have already shown that
any function of the constants of the motion is an equilibrium solution. 7
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0

     For a weakly relativistic plasma ( ), the Maxwellian 
distribution function (normalized to ) can be approximated by

kT mc
n
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distribution function (normalized to ) can be approximated by        

             ( ) exp( ),    [cf. (102), Ch. 6]  
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where is the "thermal momentum" The bi-Maxwellianp mkT
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where    is the thermal momentum . The bi-Maxwellian

distribution exp( )  [cf. (103), Ch. 6]

is also a valid equilibrium solution.
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     : ( ) above has the dimension of /  whereas the non

relativistic ( ) has the dimension of / . Upon the and
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- :Zero order relativistic particle orbit

First Order Equations :  
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     -  : 

     To obtain the first-order solution of (7) by "integrating over the
unperturbed orbit" as in Sec. 6.10, we need the zero-or

Zero order relativistic particle orbit

der orbit of a
ti l i S b i ith d i ti f th l ti i tiB0

0

particle in . So we begin with a derivation of the relativistic 
zero-order orbit.
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     Rewrite                                                           (21)
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     :   Particle dynamics
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0 1

     We treat the particle dynamics by assuming small perturbations.
This allows us to linearize the set of Vlasov/Maxwell equations by
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     Sub. all terms in (24) into the Vlasov/Maxwell equations in
(7) (13) and equating the first order terms we obtain the first
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0 11 1

(7)-(13) and equating the first-order terms, we obtain the first-
order equations:
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     Rewrite (25):  
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     Sub. ( , ) ( , ) [(32)] into (25):      
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     Comparing (33) with its nonrelativistic counterpart [(117) of Ch. 6]:
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only in the multiplication factor  on  in (33), which is the same m
difference between relativistic and nonrelativistic orbit equations [see 
(23)]. Thus, the solution of (33) is simply 
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the nonrelativistic solution 
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     Throughout the derivation of the nonrelativistic dispersion relation,
there are only two quantities which contain the rest mass :m
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0 02 4

there are only two quantities which contain the rest mass :
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or later convenience, we will retain the above notations for the 
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-  cyclotron and plasma frequencies, and write the 

cyclotron and plasma frequencies as /  and / , respectively    p
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     The dimensional difference between  ( , ) and ( , ),
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[see (31)] and subsequently the dispersion relation, because in the

nonrelativistic formalsim, we have used the  integration. [see 
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 d v
63) and (180) of Ch. 6]. 15
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: B

Relativistic Dispersion Relation for a Plasma in a Uniform
External Magnetic Field B e
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0 0 :
     Based on the discussion above, we have the following recipe for
converting the nonrelativistic d

zB     External Magnetic Field B e

ispersion relation for a plasma in a
uniform external magnetic field into a relativistic oneB e0

0

uniform external magnetic field  into a relativistic one. 

     In any of the equations in Sec. 6.12, 

1. Replace " " with " " or   ( ) with /  and
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     : Rewrite the dispersion relation for "right 
i l l l i d "[(203) f Ch 6]

A specific example
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0 0
2 22 2 2 2 3
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circularly polarized waves" [(203) of  Ch. 6] :
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     -  Rewrite (35) in slightly different form 
and neglect ions (for high frequency waves):

A Fast Wave Instability :
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and neglect ions (for high-frequency waves):
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    From (1 ) [see derivation between (5) and (6)],  we have 
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     Integrating (36) by parts and using (37), we 
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algebraic manipulations)
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k c p dp dp
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     In integrating (36) by parts, we have differentiated  with  respect
 and , with brings out the relativistic effects in the sense that the

relativistic mass  depends on  and . Terms arising from these
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differentiations can be combined into a single term 

 e z
2

1

proportional to ,
as appears on the RHS of (38).

We now specialize to ( ) ( ) ( ) [(18)]
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2    We now specialize to  ( , ) ( ) ( ) [(18)].

Then, (38) reduces to a simple dispersion relation given by
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where  and  are the equilibrium values of  and ,  respectively.
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0 0

0
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2 2 2 2
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and the nonorelativistic version in (253) of Ch. 6:
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which was 
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also obtained for the right circularly polarized wave and 

for a similar equilibrium distribution: ( ) ( )  f v v v00 2for a similar equilibrium distribution: ( ) ( )

     Comparing the two expressions, we find that the plasma frequency
and cyclot

  


 e zvf v v v

0ron frequency are both modified by the relativistic factor ,

2

as expected. In addition, (39) differs from the nonrelativistic version

by the presence of the  term on the RHS. The term has been shown
t


o be of purely relativistic origin.

0 0

0

p y g
    (39) is plotted on the next page for / ( ) 10 and 1.02

( 0.2 ),  along with the nonrelativistic results shown in Sec. 6.12.
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Special Topic I: The Electron Cyclotron Maser (continued)

l ti i ti l i i i

     In the relativistic model, both the slow- and fast-wave branches 
are unstable; however

frequencyfrequency

nonrelativistic relativistic 
are unstable; however,
in the nonrelativistic
model, only the slow-
wave branch iswave branch is 
unstable. Obviously,
the relativistic effect
i ibl f th

growth rategrowth rate

is responsible for the 
fast-wave instability,
which is driven by 

i lenergetic electrons
through cyclotron 
resonances. The 
physical mechanisms
will be discussed next.
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Special Topic I: The Electron Cyclotron Maser (continued)

- -

:Effective cyclotron frequency

     Physicsl Interpretation of Fast and Slow Wave Instabilities :

:     
     The electron-wave resonance condition is [see the denominator in 

(34)]                   

     Effective cyclotron frequency

       0,                                        (40)   z z
ek v

which implies that the electron sees almost a static wave electric field 
and hence loses or gains energy for an extended period of time.



Write (40) as 0 (41)  ff     Write (40) as           0,                                              (41)

where                                                                  (42)

is defined as the effectiv





 

  
eff

z zeff
ek v

e cyclotron frequency,  which governs the 
degree of synchronism of each electron with respect to the wave.
In (42), a change of  (hence the relativistic cyclotron frequency 

/ ) affects the synchronis


e m as expected. In addition, since the ) ye p ,
wave phase varies with , a change of  affects the electron's -
coordinate, hence also the electron's synchronism with the wave.

zz v z
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Special Topic I: The Electron Cyclotron Maser (continued)

1
   :

Si ( ) ( ) ( ) i i d d f I  
 Effective cyclotron phase space bunching

f 00
1

2    Since  ( , ) ( ) ( ) is independent of . It

represents a (or random) distribution of electrons along any 
cyclotron orbit. Thu

   


   z zpf p p p p p

uniform 
s, for every electron which gains energy from the y

o

, y g gy

wave (electric field), another electron (180  out of phase) will lose the
same amount of energy. This results in zero energy exchange between 
all electrons and the wave So to have a net exchange of energy theall electrons and the wave. So, to have a net exchange of energy, the
electrons must first be "bunched", which gives rise to an AC current.

     It is convenient to visualize the electron bunching by keeping
t k f h l t ' i ti i If f l dtrac

0

k of each electron's variation in . If, for example,  and  

of all electrons remain at their initial values 0 and ,  respectively, 
 will be constant for all electrons. Thus, no bunching occ








zeff

eff

v

urs.eff

However,  and  will have different variations in the wave fields,
causing the electrons to bunch in the effective cyclotron phase space.

zv

23

Special Topic I: The Electron Cyclotron Maser (continued)

     Rewrite        0   [ ]                     (41)     z zeff eff
ek v

0

     In the presence of a wave, each electron's  and  will vary 

according to         ( ) ( ),           (4


      

z

e z
d
dt

e
c

v

m e Bv E v e B 3)

where and are the wave electromagnetic fields which we E Bwhere  and  are the wave electromagnetic fields, which we
denote ny subscript " " because they are perpendicular to .
     The increment of  over an infinistesimal time interval 

 


 

z

eff t

E B
e


is        2

1       ( ) ,              (44)

where  may be evaluated from the -component of (43):

          


z z e z zeff

z

d

e

ek

k v k v

v z

1

                 ( ) ( ) ,         (45)

where, by 

    





      

  

z
e z z

d
dt

eke
c

c t

m v v B e v E

E ,  we have sub.  for .

Noting that the zero order is 0 we obtain from (45)
  
zk c

v

B E B

     Noting that the zero-order  is 0, we obtain from (45)

                       ( )                                    (46)       z
e

z

z
ek
m

v

v tv E
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Special Topic I: The Electron Cyclotron Maser (continued)

     The change of  is determined by the work done on the electron:

( ) (47)


      e tv E2                        ( )                                       (47)

     Sub. (47) and ( )  [(46)] 

  

 

  

    
e

z
ez

m c
ek
m

t

v t

v E

v E  into

(44)
  ek 2

2
2

                                                                (44)

we obtain        ( ( )) 








 





    

    
e

z zeff

zeff

e

ee
m c

k v

k tv E

2

2 2                                 ( ( )   ) 


    
e z

e
m c k tv E                   (48)

where we have made use of 0 [(40)] and 0.    z z z
ek v v

2 2     In (48), the terms proportional to  and  are due to  (a
relativistic effect) and  (a nonrelativistic effect)


 


z

z

k
v , respectively.

Because (hence ) are different for different electrons   ffv EBecause  (hence ) are different for different electrons,

bunching occurs. Furthermore, the two terms are joined by a " " 
sign, indicating the two bunching mechanisms are 

  


eff

compet

v E
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Special Topic I: The Electron Cyclotron Maser (continued)

2

2 2     Rewrite            ( ( )                  (48)) 


     
e zeff

e
m c k tv E

     Since the two bunching mechanisms are competitive, the non- 
relativistic model overestimtes the growth rate of  the slow-wave 
instability, which is apparent as we compare the relativistic and non-
relativistic slow-wave growth rates in the figure a few pages back.
     (48) also shows that the relativistiv mechanism dominates for fast
waves ( / 0),  while the nonrelativistiv mechanism dominates  zk( ),
for slow waves ( / 0). This explains why there is no growth 
at the borderline ( / 0).

:







z

z

z

k
k

The Electron Cyclotron Maser     : 
 

The Electron Cyclotron Maser
    The fast-wave instability, known as the electron cyclotron maser,

is the basis of a powerful radiation source called the gyrotron, which 
occupies a unique position in the millimeter and submillimeter regionsoccupies a unique position in the millimeter and submillimeter regions 
of the electromagnetic wave spectrum [Ref.: K. R. Chu, "The Electron 
Cyclotron Maser", Rev. of Modern Phys. 76, 489-540 (2004)] 26


