
SPECIAL TOPIC II: 
Convective and Absolute Instabilities

      Ref.: R. J. Briggs, "Electron-Stream Interaction with Plasmas,"
              (The MIT Press, Cambridge, MA), Ch. 2.

     Our analysis thus far has restricted the first-order solutions to a 

single normal mode (e.g. a Fourier component of the form ),
which represents a spatially periodic perturbation of infinite extent. 

zik z i te

The dispersion relation, in general, yields a complex  for a range  of
 values. For each , the solution  tells the temporal behavior of

the wave of infinite extent (frequency and growth/damping rates).
z zk k

( q y g p g )
     Now, consider a  disturbance, which is a superposlocalized ition 
of an infinite number of normal modes with < . Then, if the 
plasma is unstable, many normal modes will grow simultaneously.

  zk
plasma is unstable, many normal modes will grow simultaneously. 
Intuitively, their constructive and destructive interferences may result 
in a spatial field profile quite different from that of a single mode.
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     As will be shown below, an instability may grow in time while 
travelling away from the region of the initial disturbance (of finite
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travelling away from the region of the initial disturbance (of finite 
duration) so that its amplitude at any point along the wafixed ve path 
will grow for a finite length of time, and eventually decay to 0 (left 
fi ) Thi i ll d ti i t bilit ( lif i )figure). This is called a convective instability (or amplifying wave).

     The wave may also grow around the initial disturbance and 
eventually spread out to every point in space (based on the linear 
theory, see right figure). This is called an absolute instability.

     Obviously, the classification of convective/absolute instabilities
is frame-dependent, bacause a convectove instability may appear asp , y y pp
an absolute instability to an observer moving with the wave.
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For simplicity we consider a one-dimensional system in i ez
Green Function Formalism :
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    For simplicity, we consider a one dimensional system in ,  i.e.  
any field component  is independent of the transverse coordinates.
Then, the Green function ( , ,




z

G z z , ) is the response of the system 
at point and time to the excitation of a point source at point and




t t
z t xat point  and time  to the excitation of a point source at point  and 

time Assume that the system is unbounded (i.e. no source on the 
boundary surface), t


z t

t . 
x

hen,  ( , , , ) can be written ( , ) 
by reason of symmetry Assume furthre that a source ( ) is turned

    
 

G z z t t G z z t t
s tby reason of symmetry. Assume furthre that a source ( , ) is turned 

on at 0 and ( , ) takes the form:  ( , ) ( ) ( )            (1)

w

      
s z t

t s z t s z t g z f t

ith                                 ( ) 0 for 0                                      (2)  f t t

    Then, by the principle of linear superposition, we have

                     ( , ) ( , )      z t dz dt G z z t t g
0

( ) ( ),             (3)

here the pper limit of the integration is set at beca se the




 


 

t
z f t

t twhere the upper limit of the -integration is set at  because the
response at  cannot be affected by the source behavior after .
     Before proceeding, we pause for

t t
t t

 a review of needed theorems.
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2.8 Orthogonal Functions and Expansions (continued)

     (1) The convolution theorem for Fourier transform states that the
Fourier transform of the convolution of ( ) and ( ) is given by

 
h x h x

2

1 2

1 1

Fourier transform of the convolution of ( ) and ( ) is given by

                [ ( ) ( ) ] ( )     
    

ikx

h x h x

h x h d e dx k

1 2

2 ( )            (4)

called the convolution of ( ) and ( )

k

h x h x1 2

1,2 1,2

1 2 1 2

          called the convolution of ( ) and ( )

( ) ( )                                        (5)
where         

1( ) ( )










 ikx

ikx

h x h x

k h x e dx

h x k e dk (6)





 

Let ( )     x dx d

1,2 1,2( ) ( )                         2 h x k e dk

2 1

          (6)

   :    LHS of (4) ( ) ( )   


 
 



 



  ikxProof h d h x e dx

Let  ( )     x dx d
( )

2 1

2 1

                                   ( ) ( )

                                   ( ) ( )

 



   

  

 



 
 








 



ik

ik

h d h e d

h d h e  


ik d2 1( ) ( )  
1 2

 
                                   ( ) ( )



 





k k
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1 2

    (2) The convolution theorem for Laplace transform states that the

Laplace transform of the Laplace convolution of ( ) and ( ) ish t h t1

1 2 10 0 2

2Laplace transform of the Laplace convolution of ( ) and ( ) is

given by  [ ( ) ( ) ] ( ) ( )            
   

t pt

h t h t

h t h d e dt p p                 (7)

called the Laplace convolution of ( ) and ( )h t h t

  poles 

  ip
1

1,2 1,2

2

0

1

         called the Laplace convolution of ( ) and ( )

( )
where     

( )

( )                                                  (8)

( )









 pt

pt

h t h t

p

h t

h t e dt

p e dp (9)  



 

i

    contour of 
-integrationp

of ( ) p
  rp



1,2 1,22( ) ( )               ih t p e dp

and the contour for the -integration is 
shown in the upper figure, where  is 

                           (9)



  i

p

integrationp

   t

i

sufficiently large so that all the poles of
( ) lie to the left of the -cont p p our.

     : Invert the order of integration in (7)Proof

t

      region
        of 
integration

2 10

and integrate over the same region in -  space.

  LHS ( )[ ( ) ]



  
      pt

t

h h t e dt d
5

( )

                  (let ;  0 0)

( )[ ( ) ] 
   

   
   

      

  p

t dt d t

h h e d d
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2 10

2 1 10

0

20

( )             ( )[ ( ) ]

             ( ) ( ) ( ) ( )

Here to follow Briggs we convert the variable to



 

   

    




  



 
 
 

p

p p

h h e d d

h e h e d p p

p

d

through    Here, to follow Briggs, we convert the variable  to  p through
                                                                                               (10)
Then, in terms of , the Laplace transform formulae become

( ) ( ) 




 



i t

p i

d (11)
 

   i( )
       

( )             i tt e dt0

1
2

 (11)

( ) (12)

h th t f th i t ti

                                                   

( )                                                  
   













 i ti
it e d

  poles 
of ( ) 

i

r
where the contour for the -integration

is as shown in t


he figure to the right.
     The convolution theorem for Laplace 

f b i i f

    contour of 
-integration

  

1 2 1 20 0

transform can be written in terms of  as

           [ ( ) ( ) ] ( ) ( )                           (13)


      
   

t i th t h d e dt
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0
     Now return to ( , ) ( , ) ( ) ( )      (3)     




        

t
z t dz dt G z z t t g z f t
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0

     Perform a Laplace transform in  (with ) and a Fourier 

transform in  on (3), i.e. operate (3) with 


  


 i t ik
t p i

z dt dze . 

The LHS gives



 zz

0

     The LHS gives 
here is            ( , ) ( , )        (14)

 in Briggs.
The RHS of (3) is a Fourier convolution of and and a

   
 


        z z

z
i t ik z kk dt dz z t e

k
G g     The RHS of (3) is a Fourier convolution of  and , and a 

Laplace convolution of 
G g

 and . Thus, by (7) and (13), the Fourier/
Laplace transform of the RHS of (3) gives ( , ) ( ) ( ). 
E i i ( ) i (14) b i

 z z

G h
G k g k f

kEquating it to ( , ) in (14), we obtain    

                    ( , ) ( , ) ( ) ( ),  

 
   

z

z z z

k

k G k g k f                                 (15)

which is (2.12) of Briggs for fields independent of the transverse 
1

( ) gg p

coordinates. The inverse of ( , ) [i.e. ( , )] will later be 
shown to play the role of th

 
z zG k G k

e dispersion relation of the plasma system.
7

     Rewrite     ( , ) ( , ) ( ) ( )                            (15)
The inverse Fourier/Laplace transform of (15) gives

   z z zk G k g k f
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1
2

     The inverse Fourier/Laplace transform of (15) gives 

                  ( , ) ( , ) ( )               
 
   




 

i i t
i

t z d F z f e

1

     (16)

h ( ) ( ) ( ) (17)
  zik zF dk G k k1

2where        ( , ) ( , ) ( )                   (17)

     The prescribed -contour for (16) is 
the  line (Fig. 1). The prescribed 

 


 




 

 z
z z z

i

ik zF z dk G k g k e

  pole 
of ( )f

  i

  
Fig. 1

( g ) p
-contour for (17) is the real -axi

i

z zk k s.

     We now assume the following  
source functions: contour of -integration

r
  

             
 0

( )g z
1

0

0 0

1

sin( )

source functions:

( )       ( ) ( )        (18)
      

( ) ( ) (19)

( )     




    








i t i t

ik z zk d

h t e f f t e dt

k d

i

contour of integration

z
1

2d

dd

sin( )                         ( ) ( )        (19)

 ( ) h


   




 zik z
z

z
z

k d
k dg k g z e dz

f 0as a pole at  on the real -axis and ( ) has no pole.  zg k
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1
2     Rewrite    ( , ) ( , ) ( )                (17) 

 


  z
z z z

ik zF z dk G k g k e
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where, ( ) sin( ) /  [(19)]. For simplicity, we assume a

point source at 0 (i.e. 0). Then, ( ) 1 and (17) becomes


 

z zz

z

g k k d k d

z d g k
1( ) ( ) (20) 

   zik zF z dk G k e

zik zik      

      

contour
for 0zFig. 2 Fig. 3

      2                ( , ) ( , )                        (20)

     (20) can be evaluated by the 
residue theorem. For 0 and 

 






 z zF z dk G k e

z

zrk zrk

   
contour
for 0z

0, we close the contours on 
the -plane with different half 


z

z
k

circles of infinite radius as shown 
in the figure so that the half circles give vanishing contributions.
     0  The result for  

0 is ( )   i

z >

z F z

Convective Instability in the  Region :
( ) (21) znik ze

1[ ( ,
0 is      ( , )


 


 

zk
G k

z F z     

( ))]
        (21)

where  are poles in the lower half circle based on .

 


   



zn r

z
znn k

k i

e

9

     
1

( )

( )
[ ( )]

     Rewrite   ( , )           (21) 


 
  zn

zn k

ik z
G

i
k

F z e
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( )[ ( , )]

     In (21) , since Im[ ] 0 and 0,  ( , ) always decays 
away from the source. Then, how can there be an unstable solut






 zn

z
znz

n kk
G k

k z F z
ion ? 

1

To answer this question, we note that ( , ) is not the end results.
The final solution ( , ) is given by (16):

( ) ( ) ( ) (16)
 




   



i i t

F z
t z

t d F f1
2                      ( , ) ( , ) ( )                    (16)

 


   


  i t

i
t z d F z f e

    In (16), ( , ) is the superposition of ( , ) ( ) ranging from 
to . These superposed signals may still form

  
      

t z F z f
i i p p g y

a growing wave due to constructive interference. 
     To separate the asymptotic behavior from the transient effects, we
will adopt the same technique used for Landau damping; namely, p q p g; y,
deforming the -contour to the upper -plane so as to enclose and
isolate the effect of the 

 
0pole at  (shown later in Fig. 5).

10



     However, ( , ) is defined on the  line. In order to move
the -contour to the upper -plane, we must analytically continue

  
 

 iF z
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the contour to the upper plane, we must analytically continue 
( , ) to the region above the  line. As in the case of Landau

d

 
   iF z

amping, analytic continuation of ( , ),  denoted by  ( , ),  is 
obtained with a deformed contour :

 F z F z
k

( )

1
( )[ ( , )]

obtained with a deformed -contour :

   ( , ) ( , )       (22)1
2




 




 




  z

znz

z

z zC

ik zzn

z k

ik z

n

ie
G k

k

k

F z dk G k e

where the new -con

 z

z

k

k tour (denoted by " ") is deformed in such a 
manner that no pole crosses the -contour, as  moves upward from
the line Pole movements


 

z

C
k

 k

0 0

the  line. Pole movements 
in the -plane (for Fig. 2,  0)
as  goes from  to 

 

   

 




i

zk z
i  are 

ill d i Fi 4 b i

i

k
A

0

zik
Fig. 4

illustarted in Fig. 4  by mapping 
the  path in the -plane to  
paths in the -plane.

  z

z

k
k

zrkr

 B


   

contour
for 0z

        0  i

11

    Poles that cross the -axis 
(b t t th t )

zrk
k
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i zik
Fig. 4

0 0

(but not the -contour) as  
goes from  to  deserve
special attention. For example, 

l d


  

zk
i

zrkr

A


0   




Fig. 4

ipole  corresponds to an
amplying wave which grows 
expenentially along the 

A

z-axis, while pole  corresponds to a wave  B

 B


contour
for 0z

        0  i

1
2

decaying exponentially along the z-axis. The 0 region can be 
similarly considered by using the contour in Fig. 3.

Equation (16) ( ) ( ) (  

 



z

t z d F z f ) can
 




i i te2     Equation (16), ( , ) ( , ) (  t z d F z f

1
2

) , can 

now be written      ( , ) ( , ) ( )            (23)

In contrast to ( ) in (16) ( ) is analytic in the entire












   

 










 



i

i

i

i t

e

t z d F z f e

F z F z     In contrast to ( , ) in (16), ( , ) is analytic in the entire
-plane so that we can deform the -c

 
 

F z F z
ontour in (23).
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1
2     Rewrite       ( , ) ( , ) ( )                     (23)






   



  i

i

i tt z d F z f e
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0

0

1     From ( )  [(18)], we 

find ( ) has a pole at . If ( , ) 

( )


   
 






f

f F z

i      Fig. 5   i exponentially
   small

normal
has no poles in the plane, then by 
deformi

 
ng the -contour in (23) as 

shown in Fig. 5, we obtain


r

     0

transient effects

normal
mode

            i  i

0
0

0 0

1

( )

[ ( )]

      ( , ) ( , ) transient effects

transient                      (24)
effects



 

 




 

     



zn

i t

i t ik zi
G k

t z F z e

e

transient effects

1

0( )[ ( , )] effects

     Positi




  
n z

z znkG k
k

0ons of ( ) in (24) differ from their original positions in 
Fig 2 which are based on values on the original -contour (Fig 1)


 

znk

0

Fig.2, which are based on  values on the original contour (Fig. 1). 
If ( ) in (24) is in the upper -plane, such as pole  in Fig

 
zn zk k A .4 , we 

have  ( >0), i.e. an amplying wave along the -axis.     ze z
13

     The  instablity due to
pole grows only along z but




 ze
A

i zik
Fig. 4
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0

pole  grows only along z, but 
not in time. Also, it is at the signal 
frequency . Hence, it is called
a hich



A

ti i t bilit

zrkr

A

 B


0   



contour
f 0

        0  i
a which 
amplifies the injected signal an

convective instability, 
d will propagate away from the source

when the injected signal is off. Facts leading to such an instability are:
(i) P l i f ( ) 0 d i h iA D k k

B
for 0z

z

0

     (i) Pole  is a root of ( , ) 0 and it crosses the axis as   
rises from 

- 
 




zrA D k k
i 0 0 to  (Note that  is an arbitrarily set frequency);

     (ii) At the root crossing point on the -axis ,  is still in the lower
 

zrk
half of -plane (i.e. 0). Thus, we may state the necessary condi-  i

1

tion for the existence of a convective instability as (for ~ ) :

" ,   (25)




i t

z z i

e

For some real k  , G ( k )= 0 yields a solution ω with ω < 0.", ( )
     If we replace the Laplace transform variable  with  ( ~  

z z i,G ( ) y
p i

i i),  the condition still holds if we replace " 0" with " 0".    i te
14



 zik
contour

     0  

The 0 region can be
z <

z

Convective Instability in the  Region :
Special Topic II: Convective and Absolute Instabilities (continued)

i

zrkr

A

0    



contour
for 0zFig. 6

     The 0 region can be 
similarly considered by using 
the contour in Fig. 2. Figure 6 
shows the mapping of the

z

B         0  i
0 0

shows the mapping of the 
 to  path in the

-plane to the p
  


 i

( )

ole movements in the -plane. In this case, z
ik

k

0 0

( )

1
( )

( )

[ ( , )]
1

2     ( , ) ( , )        (26)

transient( )





 

   








  

 





 z

zn

zn

z zC

z

ik z

n

ik zzn

z k

i t ik z

ie
G k

k

i

F z dk G k e

(27)0 0

1

0

( )

( )[ ( , )]

transient     ( , )
effects

 







      zn

n z
z

i t ik

znk

i
G k

k

t z e    (27)

     Thus, pole  gives a solution  ( >0), i.e. a convective  zB e
instability which grows expenentially along the -axis, while pole  
corresponds to a wave decaying exponentially along the z




z A
-axis. 

15

     
As discussed earlier analytic continuation of ( ) to the regionF z
Absolute Instability :

Special Topic II: Convective and Absolute Instabilities (continued)

     As discussed earlier, analytic continuation of ( , ) to the region 
above the  line is done by deforming the -contour in Fig. 2
(or Fig. 3) in such a way [see Fig.


  i z

F z
k

 4 or 6] that no pole crosses the -
t d f th li I th

zk
contour, as  moves upward from the  line. In the process, we
may runs into difficulty if, for some value of  (say, ) in 
the lower half -plane, two 

  
   



 
 

i

s sr i

1 1poles (  and ) from opposite sides of z zk k
-contour merge into one (see Fig. 7). This is a difficult case because

we have demanded that contour  must pass between 2 poles. 

     To evaluate ( , ) i

zk
C

F z n i zikFig. 7

(22), we must treat this 
double root at ( , ) by 
another mothod. We first 

s zsk

i

k
 k

zi

contour C
2z 

k 1z

find out what kind of  pole 
it is.

zrkr


 s    s sr si

16



Special Topic II: Convective and Absolute Instabilities (continued)

1

1

     The condition for pole merging is that ( , ) has a double root.

( ) 0 (28)




zG k

G k1

1

,

( , ) 0                                  (28)
Let it be ( , ). Then,    

( , ) 0                     (29)











 
 
 s zs

s zs

s zs
z

z k

G k
k

G k
k

     Rewrite




( )

1
( )[ ( , )]

1
2   ( , ) ( , ) ,       (22)

which treats each pole as a first order pole Thus as two poles merge



   







   z

zn

z zC

z

ik z

n

ik zzn

z k

ie
G k

k

F z dk G k e

kFig 7

which treats each pole as a first-order pole. Thus, as two poles merge 
at ( , ),  but contour  encloss zsk C es only one of them, the denominator 

of (22) vanishes by (29).  ( , ) then has a singularity at .
Th i l i

  
sF z

i

k

zik

contour C

Fig. 7

k 1z

     The same singularity occurs
whether  is in the upper or
lower -plane. So, the analysis

zs

z

k
k

zrkr


 s

 k

   s sr si

2zbelow applies to both 0 
[(22)] and 0 [(26)] regions.




z
z

17

1

    To determine the nature of the pole at ,  we perform a two-variable 

Taylor expansion of ( ) about the double root ( ) : 
zsk

G k k

Special Topic II: Convective and Absolute Instabilities (continued)

1 1 1

0 by (28)
0 b (29)

,

Taylor expansion of  ( , ) about the double root ( , ) :

  ( , ) ( , )


 

   
 
 

z s zs
z s zs

z s zs

k

G
k

G k k

G k G k
1

,
( ) ( )

  
  


z zs

s zs
sk

Gk k

0 by (29)

2
2

2

2 1

2 11

1
2 ,

                              ( ) 0,                            (30)




 


  

z s zs
z zs

k

GG

G
k k k

2 2 1
2

1
which gives     ( ) 2 ( ) /                   (31)

     D

   



   z zs s

zs s

G
k

Gk k

ifferentiating (30) with respect to  gives zk
(31)

1
2

12 2
2

1 2
2

1 1 1
     ( ) 2 ( ) ,   (32)

which is correct up to a sign of no physical significance.

( ) ( )[ ]       
    


z z

z zs s
s

s s
z

G G G G
k kk

k k i

(31)

p g p y g

     Sub. (32) into 
( )

1
( )[ ( , )]

( , )  [(22)], we obtain













 
znz

n

ik zzn

z k

ie
G k

k

F z
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1
2

1
2

21 1
1

( )2
                  ( , )                       (33)

( ) ( )[ ]  
   

 ik zzse
G G

F z

Special Topic II: Convective and Absolute Instabilities (continued)

22
2

( )2

     This shows that the singularity in 

( ) is a branch pole in -space

( ) ( )[ ]  


 

 
 



ss s
z

G G
k

F z
         iFig. 8

branch( , ) is a branch pole in space 
as shown in Fig. 8. (see Mathew
 F z

s 
and Walker, Appendix A-1 for the 
meaning of a branch cut )

r

branch 
cut

1
2

meaning of a branch cut.)

     Sub. of (33) into 

                  ( , ) ( , ) ( )                             (23)
 

   


  i

i
i tt z d F z f e

branch 
pole

21

2
( )

[2( ) (

1
2

( , ) ( , ) ( ) ( )

( , )













 


 


s

i

s

f
G

f

t z 1
2

1
2

2

( ) ( )
1

( )) ]
 (34)




 

 






 




ss zs
ii t k z
i

i t

s
z

s

e
G
k

e d



0where we have ignored the pole at  and set ( ) ( ) because 
the dominant contribution to (34) comes from .

  
 




 s

s

zk

f f

19

     As before, to bring out the 
asymptotic behavior we deform

Special Topic II: Convective and Absolute Instabilities (continued)

iFig. 9 contour C
asymptotic behavior, we deform 
the contour for -integration as 
shown in Fig. 9 and denote the
deformed contour by Then



C
r

0

1
( )1

2

deformed contour by . Then, 
(34) becomes

     ( , ) 
 

 sf
G

C

t z 112
( ) ( )

1
( )

   (35)  
 

   ss zsi t k z i t

C
e

G
e d

  i
s

0 s

  i

1
[2( )2


 

 s
G

1/2

22
2

2

1
( )( ) ]

in which the branch pole gives the asymptotic solution: 
[see evaluation of integral in Appendix A which gives 2( ) ]:

  



s

z
s

C

i

I

G
k

I I[see evaluation of integral  in Appendix A, which gives 2( ) ]:   

      

 i
tI I

1
2

12
2

2

1 1

( )( )

[2 ( ) ( ) ]
          ( , )                    (36)



 

  


 
 

 s zss

s s

i t k zf
G Gi

k

t z e
t2

which is correct up to a phase factor of no physical significance. There
is no divergence problem at 0 since th

 



zk

t is is an asymptotic solution.
20



1
2

12
2

1 1

( )( )

[2 ( ) ( ) ]
     Rewrite      ( , )       (36)

  


 
 s zss i t k zf

G Gi
t z e

t

Special Topic II: Convective and Absolute Instabilities (continued)

2 2
2

[2 ( ) ( ) ]
     :

     (i) Since  is in the lower half 
l h 0 i l i

 



 
 


s

s s
z

G Gi
kDiscussion

t

iFig. 9 contour C
-plane, we have 0,  implying

( , ) . This indicates t


 





 si

si
t

z t e hat, 
at a fixed position ,  the wave growsz r
exponentially in time. Furthermore, 

 in general has an imaginary part.
Thus, the wave also grows expenentially in the  or z-direction. 

zsk
  i

s
0 s

  i

, g p y
This is called an "absolute instability". In contrast, the convective
instability grows exponentially only in the  or z-direction.

(ii) If the double root of ( , ) 0 occurs in the upper half
 

zD k     (ii) If the double root of  ( , ) 0 occurs in the upper half 
-plane (i.e. 0),


  

z

si

D k
 the corresponding solution will damp in time

and thus does not correspond to an instability.
21

iFig 9
0     (iii) The pole of  ( ) at  (Fig. 9) 

i f littl i ifi if it
 f

Special Topic II: Convective and Absolute Instabilities (continued)

iFig. 9 contour Cis now of little significance even if it 
still gives rise to amplifying waves, 
because the asymptotic behavior is 
d i d b h b h l

  i

r

s
0 s

  i

.dominated by the branch pole at 
In cont

s

0

rast, the convective instability
grows at the frequency .

0

     (iv) Unlike the convective insta-
bility, the frequency of the absolute instability is no longer at the 
source frequency . It is instead  given by the solution of the two

1

1

,

( , ) 0                         (28)
equations for a double root:  

( , ) 0            (29)










 
 

 s zs

s zs

z
z k

G k

G kk
     Since  and  of the absolute instability are

 s zs

s zs

z

k  governed by 
equations, they both have fixed values. 

two

22



1

     In contrast, the frequency of the convective instability is governed 

b l ti [ ( ) 0] Th it i t f fG k

Special Topic II: Convective and Absolute Instabilities (continued)

1

0

by only  equation [ ( , ) 0]. Thus, it exists for a range of 

( , ) values, and the frequency it grows ( ) at is dete


 

s zs

z

one G k

k rmined 

 by the source.externally y

     (v) The convective instability is often exploited in an amplifier 
system, in which an external source determines the frequency of the 
wave while the system amplifi

y

es it The absolute instability is oftenwave while the system amplifies it. The absolute instability is often
exploited in an oscillator, which gets started from the noise level
and grows rapidly to the saturation level at its intrinsic frequency.

23

     On the basis the analysis, we may summarize the conditions for 
the existence of an absolute instability as follows:

Special Topic II: Convective and Absolute Instabilities (continued)

y
     ( ) -s

z
-1

1. For some value of  ω let it be ω  in the lower half  ω plane, 
G (ω,k )=

- (37)
zs

z

0 has a double root k , whcih can be either in the upper 
or lower half  of  the k plane.                                                         (37)


z

s i

o lowe half of the k plane.
     2. As ω moves downward from ω  toward the ω

- -
zs

-σ line, the 
double root k  splits into 2 roots. One remains in the same half  of  the 
k plane while the other moves to the other half of the k plane
(as in Fig. 7 with movements of  and poles of 

z zk plane, while the other moves to the other half  of  the k plane. 
   reversed.)         (38)

     :  (i) If we replace the Laplace transform variable  with  

( ) diti 1 h ld if l '' "







z

i t

k
Note p i

l h lf l( ~ ),  condition 1 holds if we replace '' - " 
with "  - ", and condi

 i te lower half  ω plane
upper half ω plane tion 2 also holds if we replace 

" - " with 
" "

sAs ω moves downward from ω  toward the lower ω plane
d f t d th l" - ".

     (ii) If a system is free from the absolute instabi
sas ω moves upward from ω toward the upper ω plane

lity, the necessary
condition (25) for a convective instability is also a sufficient condition.24



      

1 The dispersion relation for the EM wave in a cold plasma is

Applications of Instability Conditions : 
Special Topic II: Convective and Absolute Instabilities (continued)

2 2 2 21

     1. The dispersion relation for the EM wave in a cold plasma is    

     ( , )[ ( , )] 0,  [(143) of Ch. 6]  (39)

which applies to a

        z z pezG k D k k c

 wave with ~  dependence.   zi t ik zE e
2 2 1/2 2 2 1/21     (39) gives   ( )  or   ( )         (40)

If ,  is purely imaginary, and one of the sign of (40) gives 
lif i b t

   
 

     


z pe z pe

pe z

i
c ck k

k
i lit i ld lan amplifying wave, but in reality no wave can grow in a cold plasma.

     This situation is clarified by the convective instability condition in
(25). For a real , (39) does not have a solution  with an imaginaryzk
part. Hence, according to (25), there is no convective instability, i.e.
we may only accept the root from (40) with the proper sign, which 
corresponds to an evanescent wave. 
     There is no absolute instability in (39) either, because the double 
root ( 0,  ) is not in the upper or lower half of the -plane.   z pek

25

     2. Consider the dispersion relation for the two-stram instability in
(83) of Ch 6 (see figure for the model):

Special Topic II: Convective and Absolute Instabilities (continued)

22

2 2
1

( )

(83) of Ch. 6 (see figure for the model):

         ( , )[ ( , )] 1 0,                  (41)

which can

 


 
     z z

pa pb

bzk v
G k D k

be put in the form: which can 

2
22

2 2
1

be put in the form:

  ( , ) (1 )(1 ) =0                                


 
    z

zpa pbbG k
k v

v

( )z bv v 
( )zv

2

2
1

1

              

( , ) 2(1 ) (1 ) 0                         

Apparently ( ) an






 






    

z
z

zpa b b
k G k

G k

v k v

1d ( ) have no solution i e G k

zv
bv0

     Apparently, ( , ) an zG k d ( , ) have no solution, i.e.

there is no double pole. Hence, there is no absolute instability in (41).

On the other hand, for a real , there is a complex solution  in both





 z
z

z

k G k

k
the upper and lowe

z

r -plane [see (86) of Ch. 6]. Hence, the instability
in (81) of Ch. 6 is a convective instability.


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     3. Consider the dispersion relation for the two-stram instability in
(88) of Ch. 6 (see figure for the model):

Special Topic II: Convective and Absolute Instabilities (continued)

2 2

2 2
1

( ) ( )

(88) of Ch. 6 (see figure for the model):

           ( , )[ ( , )] 1 0,       (42)

which can be 

 
 

 
      z z

pb pb

b bz zk v k v
G k D k

put in the form:
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1
p

       ( , ) ( ) ( ) ( )

                        ( ) 2 ( ) 0                      (43)

    

  





       
    

z z z zb pb b b

z zb pb b

G k k v k v k v

k v k v
2 2 2 21    ( , ) 2( )( 2 ) 4  

    
z

z z zb b pbk G k k v k v
2

2 2

2 2 2

0

                          0                                            (44)

S b (44) i t (43) i

 



   

z b

z b pb

k v

k v
( )v v( ) v v

4 2 2 2 2

2 2 2 33

     Sub. (44) into (43) gives  

       (4 2 ) 0


  



  zpb b pb pb

pb

k v

zv

( )z bv v ( ) z bv v

v0v2 2 23
4 2,            z zsb pb

pb

bvk v k

1

                                              (45)

     Thus, either  or  is a double root of ( , ).  
zs zs zk k G k

zv
bv0 bv

27

2 2 2 23

2     Sub.  [(45)] for  into 0 [(44)]


      zs z z b pb
pb

vk k k v

Special Topic II: Convective and Absolute Instabilities (continued)

2
2

2

24we obtain                                          (46)


 


     pb pb

zs z z b pb

s s

bv

i

2 2     Thus, at either  or ,  we have two 
 

    pb pb
s si i

1

double 

roots (  and  ) for  ( , ) 0. 

(42) i d i d i Ch 6 b d d d f h
 



 zs zs z
i t

k k G k

     (42) is derived in Ch. 6 based on  dependence for the wave
field, but (42) is independent of the sign of , thus applicable to both

 and 








i t

i t i

e

e e  dependence. To be consistent with the convention oft

2

the current Special Topic, we adopt the  dependence. Then, the

double root at  meets condition 1 for the existence of an 

b l t i




   pb

i t

s

e

i

t bilitabsolute instability.
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     To see whether condition 2 is also met by the required pattern of 
 b

Special Topic II: Convective and Absolute Instabilities (continued)

2
2pole movements on the -plane, we move  from ( ) 

downward along the imaginary axis. Since  along this path is real,


 


   pb
z sk i

k as solved from (43) will always be complex conjugate pairs, i.e. if zk
*

as so ved o ( 3) w a ways be co p e co jugate pa s, .e.

 is a solution of (43) (which has real coefficients),  must also be a 

solution. Thus, as  moves down from ,   will ea  

z

z z

s zs

k k

k ch split into 2 
l j t t hi h th i t diff t h l f th

i zikFig. 10

complex conjugate roots, which then move into different halves of the 
-plane, as shown in Fig. 10. Thus, condition 2 is also satisfied. We 

therefore conclude that the 
di i l

zk

i i (42)

k

dispersion relation in (42) 
has an absolute instability. 

zrkr 
zsk

zsk
2


 pb
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( )

( )     The integral  in (35) of main text is  ,    (A.1)
 

  


   si t

C
eI I d

Appendix A: Evaluation of Integral I in (35)

( )

where contour C  is along the two sides ( and ) of the branch cut
(Fig. 1).

First we move the branch pole to the o

  


 sC

A B

rigin of a new coordinate     First, we move the branch pole to the o

1/2

rigin of a new coordinate

system by defining            ,             (A.2)

where contour C is along the relocated branch cut as shown in Fig 2

  


   


s

iyt

C
e
yy I d

where contour C  is along the relocated branch cut as shown in Fig. 2.

Fig. 1

t C
iy

Fig. 2
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contour C
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contour Ci
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ry
ss

30



1/2     Rewrite                                                         (A.2) 
iyteI dy

Appendix A: Evaluation of Integral I in (35) (continued)

1/2 1/2

1/2

2

( )

     Next, let   / (2 ). Then (A.2) can be written

                              2  


  







C

ix t
C

y y

x y dx dy y

I e dx                                          (A.3)
C ( )

where contour  is shown in Fig. 3, which corresponds to contour 
 in the -plane and contour  in the -plane. The mapping of
t t t




 


C
C C y

C ill b di d th tCcontour  to contourC   will be discussed on the next page. C

contour C
iy

Fig. 2Fig. 1

i

Fig. 3
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ry
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3
2

     The downward contour (path ) in the -plane is given by 

i h
i

A y
Appendix A: Evaluation of Integral I in (35) (continued)

0 0

1/21/2
1
2

2

3
4 4

                   with  to 0
     Hence, the corresponding contour in the -plane is 
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 
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  

   ii i

y y e y
x

x y y e y e e y
1
2 4 with to 0


 

i
e y0 0

24 4         x y y e y e e y 0
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0
2 4

4

with  to 0

or                with  to 0

: The values of  on each side of the branch cut in the -plane 


 

 
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e y

x e

     Note y y p
differ by a sign (see Mathew & Walker, Appendix A-1).
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2

     The upward contour (path ) in the -plane is given by 
i

B y
Appendix A: Evaluation of Integral I in (35) (continued)

0 0
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2 4

                   with 0 to 
with the corresponding -contour given by 

with 0 to
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22 4                   with 0 to 
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4        with 0 to 
     Thus, contour  in the plane (paths A and B) is as shown in 
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     Now return to the integral:

Appendix A: Evaluation of Integral I in (35) (continued)

4

2

2

                        2                                               (A.3)

Writing and using again,
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     Writing  and using  again,

we have      
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     Hence,     
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by (18) of Ch. 6
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