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We find conditions on the ten ﬁarameters of the Poincaré Gauge Theory of Gravity which are
necessary for solutions with an asymptotically anti-de Sitter metric and asymptotically constant
Riemann-Cartan -curvature or asymptotically constant torsion.

§1. Introduction

- Motivated by contemporary fundamental theoretical principles, a class of the-
ories with gravity treated as a gauge theory for the Poincaré group has been devel-
oped principally by Hayashi and Shirafuji,” Hehl® and their colleagues. For these
Poincaré Gauge Theories (PGT)** space-time has a Riemann-Cartan geometry, i.e.,
a metric compatible connection with torsion. The field equations describe how the
curvature and torsion are driven by the matter energy-momentum and spin density
tensors. The gravitational Lagrangian is assumed to contain terms which are at
most quadratic in the curvature and torsion. With normal parity this leads to a ten
parameter class of theories. For a wide range of parameters the theory is experimen-
tally viable;"2-®® the search for theoretical restrictions on these parameters con-
tinues.” » :

One type of condition restricting the parameters is to consider those values which
permit solutions with a certain asymptotic behavior. In the past the importance of
such conditions and the limitations they imposed on other results was not sufficiently
appreciated. .

In particular, much initial effort went, quite naturally, into classifying ‘massive’
modes®?® in the linearized PGT theory. At that time it was not recognized that the
flat background assumption is only possible if the parameters satisfy one or more
conditions, conditions which render at least one of the modes ‘massless’. Only later
were these ‘massless’ modes analysed.” A related situation is in the Hamiltonian
analysis'” where again the asymptotically flat conditions require the vanishing of at
least one of the ‘mass’ parameters; consequently, the purely second class ‘if constraint’

" assumption is not valid. Again, only much later, were!? these degenerate “first class’

constraint cases studied. In both of these instances this oversight led to the relative

*) This work has been supported by the National Science Council of the Republic of China under contract
No. NSC 81-0208-M-008-03. :

f"*) We are considering here specifically only what has been referred to as a ‘Kibble’ type gauge theory,
and not, in particular, to the Poincaré gauge theory developed by Kawai.® Although this interesting theory
is based on a different implementation of the gauge principle, its physical content? is quite like the PGT we
are considering; so the same conditions may be necessary for asymptotically anti-de Sitter PGT solutions.
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neglect of the most interesting physical cases. Another instance where the necessary
parameter restrictions for the existence of asymptotically flat ‘solutions were over-
looked is in a ‘proof’ of energy positivity for R+ R? theories.'® Such theories simply
do not permit any asymptotically flat solutions.”™ Consequently, the energy expres-
sions which were used are doubtful and thus the ‘proof’ is not convincing.

The parameter values that allow solutions with asymptotic Newtonian behavior

were worked out some time ago.'® Since then there has been considerable interest in
solutions' for which the metric asymptotically approaches the anti-de Sitter metric.
This corresponds to an asymptotically constant (negative) Riemannian curvature.
(Only the negative case has an asymptotic region.) Asymptotically anti-de Sitter
PGT* solutions are especially interesting physically because they permit total
energy-momentum and angular momentum (originally defined only for asymptotically
flat spaces) to be defined in terms of the asymptotic geometry.'®'” If the Riemannian
geometry has asymptotically constant curvature the Riemann-Cartan geometry could
have asymptotically constant curvature or torsion. Here we extend the earlier
asymptotically flat work,” determining the parameter values of the PGT which
permit solutions with asymptotically constant curvature or asymptotically constant
torsion. :
To investigate the weakest parameter conditions that permit asymptotically
constant curvature we look for spherically symmetric deviations from the background.
There are several reasons for taking this limited view: (i) Physically, for gravitational
fields, higher multipoles should not be possible without a mass monopole; (ii) any
non-spherical terms should fall off at least as fast as the mass monopole terms and so
they cannot dominate asymptotically; (iii) while we have a good idea of the
asymptotics of such terms for asymptotically flat space such is not the case for -
asymptotically constant curvature spaces; (iv) finally, such terms could only lead to
additional restrictions going beyond what we seek: the weakest conditions which
permit some non-trivial solution. :

Although we need concern ourselves here with only spherically symmetric terms
the meaning of spherically symmetric should be clarified. While Newtonian gravity
is also reflection invariant it is not obvious why we should (or should not) require a
more general gravitational theory to have this property. For this reason we investi-
gate both cases, finding the necessary parameter conditions which permit
asymptotically O(3) symmetric solutions and those which permit asymptotically
SO(3) symmetric solutions. '

Our plan is as follows: In § 2 we summarize the Poincaré gauge theory. In § 3 we
discuss the background geometry and the rate of asymptotic fall off of the curvature
and torsion. Section 4 concerns the asymptotic curvature conditions and § 5 covers -
the conditions for asymptotically constant torsion. The total energy is expressed in
terms of the asymptotic solutions in § 6 thereby obtaining a further restriction which
sets the scale of the PGT parameters. Finally we discuss our conclusions in § 7.

*) The relationship of Poincaré gauge theory and anti-de Sitter gauge theory has recently been explored.’®
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§ 2. Poincaré gauge theory
The gauge vector potentials of the Poincaré gauge theory of gravity’? are the
orthonormal coframe 9 for translations and the metric-compatible connection one-
forms w®=—o®*=I9" for Lorentz transformations.® The corresponding field
strengths are the torsion 2-form O@%=d9°+ws;"A3*=(1/2)Fn*9*N9” and the curva-
ture 2-form Q% =dw”+ v No”=(1/2)F.*9N5". The field equations are
obtained from the Lagrangian 4-form

I:W(&a, @a’ .Qaﬂ)'i'c}(source . . (2'1)

The gravitational Lagrangian density <V is assumed to be at most quadratic in the
curvature and torsion. Consequently the theory has 10 dimensionless parameters
controlling the amplitude of the cosmological constant, the scalar curvature, the 3
irreducible quadratic torsion terms and the 6 irreducible quadratic curvature terms
(only 5 are effectively independent). The field equation 3-forms are

0L _ oV o ' :
Bi=s5e=~DHet e +3.=0, (FIRST) (2-2)
Ear=-32 = — DHop+ 94 N Hay + =

ap.— 80)‘1’9 = ‘ . ap [p/\ a]+faﬁ—‘0, (SECOND) (2.3)

where
3
Ha=— gc(;v :_%*(EA@‘“)@(:) : | 2-4)
CV ] .6 .

Hapi= =2 = — 4 (90 7 85) —*(2 B 20) (2:5)

K

are the gravitational field momenta (which contain the weighted irreducible parts,
@@, and © Qs of the torsion and curvature),**

0K
Se=S5e, (2:6)
K _
o= s | (2-7)

are, respectively, the canonical energy-momentum and spin density of the source and
[/ is the Planck length.

*) We follow the conventions of Hehl and his coworkers,'"”'® which are convenient for symbolic
computer calculations.
*%) The relation of the parameters used here to those used in another common convention” is /7%(Aq, A,
As, As)=+(—2a, 3a,68, —27/3), and « Bi, Bs, Bs, By, Bs, Bs)={(3a, 4as, 4ay, 2as, 2as, 24as), for signature
H(—+++).
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§ 3. Background geometry and asymptotics

The anti-de Sitter metric given by
9= — ‘@ + 9 @ + 5" @ 8"+ 5" D 5o’ (3-1)
with thevspherical orfhonormal coframe |
Sof=e®dt, S =e ®dr, 900=rde , S’=wsinbde, (3-2)

where &?*°=1+(#/R)* and ¢, r, 0, $ are spherical coordinates, will serve as our
background. The underlying Riemannian geometry has, of course, vanishing torsion,
and the Riemannian curvature 2-form

r?ém: _%goﬂ/\ l90a ’ (3'3)

is that of a constant negative curvature space with radius of cuvature R.

There has been much interest in this anti-de Sitter geometry. Its symmetry
group has certain similarities to the Poincaré group permitting, in particular,
definitions of energy-momentum and angular momentum.'® The anti-de Sitter geo-
metry is thus well suited to serving as an asymptotic background for dynamic geometry
theories since it allows the basic conserved quantities: total energy-momentum and
- angular momentum of a solution to be defined in terms of its asymptotic geometry.
- Hence, asymptotically, the gravitational field appears to come from a point particle.
We can thus generalize the idea of ‘asymptotically Newtonian’ gravitational fields.
We want to do this in a way that in the limit 1/R—0 we recover the ‘asymptotically
Newtonian’ results.

In the PGT the orbits of structureless test particles are governed oxnly by the
underlying Riemannian geometry. So we next consider this Riemannian geometry.
In the Einstein theory introducing a central mass # into an anti-de Sitter space leads
to a unique solution: the Schwarzschild anti-de Sitter metric

g=— 'R+ "R+ 9°RI’+ 9* R 9* ' : (3+4)

with the orthonormal coframe being
9t=c®dt, 9"=e~%dr, 9°=rd0, 9°=rsindds, (3-5)

where ¢**=1—2m/r +(»/R)®.. We should consider both the regime m< 7 < R in which
case the geometry is very nearly Schwarzschild (indeed very nearly Newtonian), and
the asymptotic regime m< R< 7. Within these regimes we make the ‘correspondence
principle’ assumption that the metric (3-4), (3+5) is good also for the PGT at least to
order O(1/r) (i.e., falls off faster than 1/) for sufficiently small m.

The background Riemann-Cartan geometry has more structure than the back-
ground Riemannian geometry. However, at least asymptotically, it should have no
less symmetry. Consequently, we assume the background Riemann-Cartan curvature
is of the form : :
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.Qoap”—;CO(%B/\&oa . ‘ (3-6)

asymptotically for some constant Co. There are two obvious candidates: Co= —R™
and Co=0. It turns out that these are the only possibilities.

We arrive at this conclusion by assuming asymptotically constant O(3) invariant
torsion, specifically :

N | ' (3-7a)

o =129y Aoy, (3-7h)
O'=H{ad" A 900 Indt A | (3:7¢)

0 =30 A0 — ko' Ao, | (3-7d)

where fo, g, ho, ko are constants, and compufing the curvature 2-form:

Q7 =—R(1+ )% A", » ’ (3-8a)
Q%= —R 21+ )1 —g0)86° A So* + R~ ko— ho(1— go) 19" A ", (3-8b)
Q%=—R>1+ fo)1—90) 9 A 9 + R~ ko— ho(1—g0) 186" N 0", (3-8c)
Q7 =—R(1—go— hoko) 9o’ A" + R~ 2ko(1+ £5) 86’ N 80* (3-8d)
Q7= — R X1~ go— hoko)9e® A S + R~ 2ko(1+ fo) So® A S, (3-8e)
9 =—R[(1—g0)*— ko*]9? A 5’ . | (3-8f)

The restriction Fyp*=2R2k(1+ fo)=0 gives two possibilities, (i) 1+ /%0 and k=0
:)’Co:—R“z, or (11) 1+f0:0@C0:0. )

§4. Asymptotic constant curvature conditions

We first consider a background with constant curvature, i.e., the torsion vanishes
and the Riemann-Cartan curvature has the form (3:6) with Co=—R™% This back-
ground solves the PGT field equations (2-2), (2-3) if :

Co=—to{ AolR*+4-)=0. ) ()

We define asymptotically constant curvature to ‘mean, that the curvature 2-form
asymptotically approaches —R29°A 9% to order O(»®) (ie, it may have non-
vanishing terms of this order just as in the asymptotically Newtonian case'). The

~ principal reason for making this assumption is that then parallel transport around a

loop (holonomy) at large » will be governed only by the background anti-de Sitter
1/R? term. In view of the form of the unit radial derivative operator, e,=e’9,, we
infer that the connection (and thus the torsion) should approach the background at
rate O(»%¢™?) for spherically symmetric terms. This is consistent with our frame
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assumption (3+5). The factors of e ®=xe~%° have been introduced in a way which
allows results that are valid also in the asymptotically Newtonian 1/R—0 limit.
Note that asymptotically e~? switches from R/# to 1 in this limit.

We first consider the case that the geometry has O(3) symmetry (spherical
~symmetry and reflection invariance) to lowest asymptotic order. Only a few of the
torsion tensor components may be non-vanishing to this order with respect to the
spherical orthonormal frame (3-5). Hence the torsion 2-forms are assumed to have
the form '

O =~ /I NI+ 0(r?e™), (4-22)
O"=—Hshd" NS+ O(r ™), . (4-2p)
0" = o (g8 N~ R NI+ OGP ™),  (4-29)
@¢=Tzie;(g;9’/\ 9P — BN I+ O(r 22 %), : (4-2d)

where £, g, # and % are constants.

With the above asymptotic forms for the frame and torsion 2-form, we find (using
REDUCE™ and EXCALC'™) the components Fu.=(*E.). of the first field equation to
lowest asymptotic order ‘

Fu=3c—5lc féz(c1+d1)g]+ o), (4-3a)
Fu= —%[(CHLdl—céo)h+(2cl+3dl—do)k]+ o), - (4-3p)
Frn=—"5GBa+d+d)h+(6ei+3di+d)k]+0(r), - (4-3¢)
Fr==3c~—5{(3ci+2d)f~2Bci+2d)gl+0(r7), C (4-3d)
Fu=Fy=—3c—"%[(cr+ d)f — Qe+ d)gl+ 00 (4-3¢)

and the components S%.=(»E®), of the second field equation to lowest asymptotic
order

St¢¢=Stﬂe:2—:2}/Z‘é‘$[(Cl+ do)h+(201+ do)k] + 0(7’_2@_@0) y (4 -4a)
To= g litalaf — 2t dgl+ 0(re™®), | (4-4b)

Str-rz_’2“7/1/2}@7[(01+d1—d0)h+(201+3d1—do)k]"l‘ 0(7_26_Q°) s ‘ (44C)
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‘S”"}:Sms“_g P (D[(Cl_l—dl)f (2cl+d1)g]+0(r‘2e o) | (4-4d)

Here we have introduced the convenient parameter combinations™®

C1: :#(th ‘f‘Az) s

= Ao — A1) +-25(Ba—B),

di=tr( Ay A)+—(Be+ Be) . (4-5)
; Requiring Eqgs. (4+3) and (4-4) to vanish gives, in addition to co=0, the following
; conditions:
| —2ci+d | | |
& (ertdy) (f o, (4-6)
3a+2di —2Bat2d))\g -
di—2do 3di—2d\[ h '
={. 4-7
( Cl+d0 201+d0 )(k) - ( )

We relax our requirement of reflection invariance, i.e., we now consider SO(3)
symmetry. Then the number of relevant torsion tensor components increases. We
now have the following asymptotically to lowest-order non-vanishing torsion compo-

nents:
=(4-22)—— 2 wpI NS’ (s
07 =(4-2b) +—H7a9" N O*, ' (4-8b)
0= AP+ s9ENS?), (4-8c)
O =(4-2d) +7 5 (19" NS’ +59° N S°), | (4-84)

where p, g, s, t are also constants. Without the requirement of reflection invariance,
we also have extra lowest-order terms in the field equations:

Fs¢——F¢o——[6‘zq+(262+do)t]+0(7’”3) ) (4'9&)

SB¢’=_27—72ﬂe“’[(02+a’z)j>+ZCzs]+ O(r~2e=%) ‘ - {4-10a)

*)} For comparison with other results we note that in the other common convention” these combinations
are c:=(1/310(24:+ Az)=2(a+ B), (1 /I As— A1)=~3(a+(2/3)a), (2/k)(B:+ Bs)=4(as+12as), (2/x)(Bs— Bs)
=4(12as—a4). All but the last have played important roles in earlier studies.”®~*"
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8% =—5 et d)g+ Q2o+t do—do)t]+ O(r~2e™), (4-10b)

S*=—S"=—Tl a2t d)s]+ 0(r ™), (4-10c)

S”’eZ—S”¢=2—:zng@-[62q+(202+do)t]+0(7’_26_‘”“) , ’ _(4'10d)
where®

Cs! :"QLZT(AI +24,),

di=r(Ao—= Ay +—257(By+ By) N (4-11)

Requiring the lowest-order equations (4-3), (4-4), (4-9), (4-10) to vanish gives Egs.
(4+6), (4-7) and the following conditions:

/-Cz 2¢:+de\[ D '

czt+ds 2¢cz J\s =0, : (4-12)
C2 2¢2+ do q\ :

<Cz+a’z 2c2—do+dz><t)"°' | (#-13)

In order to have non-trivial asymptotic solutions to Egs. (4+6), (4+7), (4-12), (4-13)
not all of the parameters. f, ¢, %, &, D, ¢, s, t can vanish. Hence at least one of the

Table I. Asymptotic constant curvature conditions for O(3) symmetry.

arameter conditions restriction on the solution.
b amplitudes f, g; 4, &k
di=0=c ) no restriction
di=0%+c f=29, h=-2k
dl:lt():CX ) . fig=0, h=--3k
do:() 3 . .
d1=_76‘1:r':0 f=—g, h=k=0
oqume—%cl:#o ' f=g=h=k=0
__3 . _ _ _
dl__761—d0 f=—g, h=k
di=c=0 h=—&
d1=0:f361 f=29, h=k=0
doF0 : d1:“‘g‘cl¥do f=—g, h=Fk=0
dl¢_%cl 3 0¢de1=_2do(C1+ dl) f:g=O=(2C1+d1)h+(46‘1+3d1)k
dit—sa, VFad+—2d{c+d) F=g=h=k=0

*) For comparison with the results of others we note that in the other common convention” these
combinations are ¢cz=(1/3/)(A1+2A4s)=a—(4/9)y, which is familiar from earlier studies,™®~*" and (2/x)(B:
+ Bs)=8(as+6as).
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Table I. 'Asymptotic constant curvature: additional conditions for SO(3) symmetry.

" diti restriction on the solution
_ parameter conditions amplitudes £, g, h, &
dr=0=¢; no restriction
- dh=0%Fc2 p=—2s, q=—2¢
do=0 deF0=0Cz p=s=0, g=—t¢
do=—3c2%0 =s, q=i=0
0+ dy+ — 32 #0 p=g=s=1t=0
de=—3C=dbp p=s, g=t
&= 2=0 t=0
- de=0*c; p=—2s, q=1t=0
EN
%0 do=—~3C2F db p=s, g=t=0
doF—3¢z, O*Czdzz_do(26‘2+dz) P=S;_O=(262+dz)q+(462+dz)l‘
d2¢*36‘2, 0¢C2d2=f:—do(26‘2+d2) p=g=s5=¢=(

following determinants must vanish:
det(4-6)=di(3c1+2d),
det(4-7)=—cidi—2do(c1+ di),
det(4-12)=de(3c2+ ds) ,
det(4-13)=—deca— do(2c2+ d2) .

(4-14a)
(4-14b)
(4-15a)
(4-15b)

The conditions on the parameters that allow solutions with constant curvature at

_ large distance from the source with O(3) symmetry are given in Table I. Additional

possibilities permitted by SO(3) symmetry are given in Table II.
The limit 1/R?~0 yields the asymptotically flat case which was studied earlier.
In this limit do=di=d>=(A¢—A1)/I?>. The conditions reduce to A=0 and the three

cases

d=—3a#0, if f=—g, h=k,

di=0%c, if f=2¢, h=—-2%,

di=0=c1, no restrictionon f,g, 4, %

(4-16A)

(4-16B)
(4+16C)

for ‘O(3) symmetry, and the additional possibilities

doe=—3c2%*0, if p=s, g=t,
do=0%c,, if p=—2s, g=—2¢,

d>=0=c2, no restrictionson p,s,q,

AO—A1¢0=2A0+A2 s
Ao—A1:0:/:2Ao+A2 ,
AO—A1=O=2A0+A2 ,

(4-17a)
(4-17b)
(4-17¢c)

'for'SO(S) symmetry. In terms of the original parameters these conditions are

(4-18A)
(4-18B)
(4-18C)
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Ag— A1 F0=As+2A;, B (4-19a)
Ao— Ar=0%A¢+2As, (4-19b)
Ao— Ar1=0=Ao+2As, (4-19¢)

respectively, which (aside from a change in notation) are the same as cases A, B, C,
a, b, ¢ obtained in the earlier ‘asymptotically Newtonian’ work.” Physically, the
combinations Ao— A1, 240+ A, and ‘Ao+2As have been identified as “masses”™ of the
PGT linearized modes.™®~Y  Note that at least one ‘mass’ must vanish in order to
have asymptotically flat solutions.

§ 5. Asymptotic constant torsion cenditions

We now consider a background for which the curvature vanishes (i.e., a telepara-
llel background) but the torsion is non-vanishing. Using the frame (3:2) and the
Minkowski connection coefficients w,°=d0, w,’=sinfd¢, ws’=cosfdy we find the
background torsion 2-form:

@ot::, _(QQO),ﬁot/\ l907. s R (5'13.)
@7 =0, (5-1b)
0 e =14, 0
&= " " A, (5- 1c)
$o . -
Bt =Ly n g7 . (5-1d)

Although the torsion coefficients are only asymptotically constant, this geometry can
still serve as our background. For this background geometry to solve the PGT ﬁeld
equations (2-2) and (2-3) we must impose the extra conditions :

2A0+ A:=0, | (5-2)
Ao—Ar=0, ‘ | ~ (5-3)
as well as the expected co=0, Eq. (4-1). ‘
Following the same procedure as in the prev1ous section, we look for the spherical

deviations from the background. We first assume that, asymptotically, _the torsion
has O(3) symmetry to the lowest order. The torsion is thus assumed to have the form

@t =—(e?Y 9 NS+ ri’;@f&t/\sw O(3~2e=%) (5-42)

@’=0+7’Z—@ham 9+ O(r~2a7%), _ (5-4b)
o ° .

0'=2Lor N oo +—Frlg87 N9~ R9A %)+ O(r =), (5+40)

*) In the other common convention” these combinations are (1//%)(A0—A)=—3(a+(2/3)a), (1/I*}(2Aq
+A:)=6(8—(2/3)a), (1/1P)(Aot+24s)=—(4/3)(r +(3/2)a).
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@"—ﬁ&’/\ﬁ"—k Mg N 9* — kS N9+ O(r? _@") (5-44d)
= 722\ A r ) :

where f, ¢, # and & are constants. With the Schwarzschild anti-de Sitter metric given
in Egs. (3-4), (3-5) and the torsion 2-form (5-4), by imposing the conditions (5-2),
(5-3) we find that the components of the first field equation vanish to the order O(» %)
and the components of the second field equation are

S,= G, — ——m—< KRZ)(B4+BS)/@+0(¢-2 ~o0) (5:52)

§¥= (e )2Bu+ 3B+ Bo)f +2(By~ Bogl+ 0(r2e™™),  (5:5b)

3r%e

§7=S"= s 1B~ Be)f+(B1+SB4+2Be)g]+0(7‘2 -e0)

- (5-5¢)
- Requiring Egs. (5-5) to vanish gives the following conditions:
(231+3B4+Bs' 2(B1— Bs) )(f)zo, ' (5-62)
B1—Bs B1+3B4+2Bs .
(Bs+Bs)k=0. - (5-6b)

We now relax our requirement of reflection invariance, i.e., we consider SO(3)
symmetry. We add the extra components given in (4-8) into Eq. (5-4) and get the
same extra terms of the field equations—Eqs. (4-9) and (4-10). Requiring the field
equations to vanish gives conditions (4-12), (4-13) on 2, ¢, s and .

" The conditions on the parameters that allow solutions with constant torsion at
large distance from the source with O(3) symmetry are given in Table IIL* Addi-

tional possibilities permitted by SO(3) symmetry are the same as those given in Table
II. :

Table III. Asymptotic constant torsion conditions for O(3) symmetry.

L. restriction on the solution
parameter conditions amplitudes 7, g, I,
. B+ Bs=0=B:+5, no restriction
a’u:'() . B4+Bs 0=/=B1+B4 f:*
Bi+ Bs#0=B,+ B, f=2g, k=0
Byt Bs+0+B,+ B: f=g=k=0
B4+Bs=0=Bl+B4 k=0
Bi+Bs=0+B,+ B f=-g,k=0
dote0 Bi+Bs=0=B,+ B, szQ_
Bi+Bs=0+B1+ B, f=g=0
(B4+Bs)(B4+Be)¢0:Bl+B4 f=2g, k=0
(Bi+ Bs)(Bs+ Bs)(Bi+ B:) 0 F=g=k=0

*) In the other common convention® the combinations appearing here are x (Bs+ Bs) -Z(as-i-' 12as),
kM Bi+By)=(3a:+2as), £ (Bi+Bs)=2(as+as), all of which have played an important role in earlier

studies »®~11
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§6. Total energy scale

One more scale restriction on the PGT parameters can be obtained by matching
the strength of the field to the amplitude of the source. Usually such a restriction is
obtained by matching the weak field limit in the interior of a source to the Poisson
equation of Newtonian gravity. This works well enough for solutions which are
asymptotically flat, however, in the more general situation considered here we expect
the Poisson equation to hold 6nly to order R~2+0, so it is more difficult to get a precise
condition on the parameters from the limit to the Poisson equation. Instead we can .
obtain a scale restriction with no such uncertainty from asymptotic matching to the
. total energy. For asymptotically anti-de Sitter solutions the total energy is well
defined. It depends only upon the asymptotic underlying Riemannian geometry; for
the Schwarzschild anti-de Sitter metric (3-4) and (3-5), the total energy is just the
mass parameter #. On the other hand, an expression has recently been found'”
which gives the total energy as an asymptotic 2-surface integral in terms of the PGT
quantities

2 .
E=—Lf0] 5)aH .+ 40 N3] Hot)+(3) ™) 4Has (6-1)

where 4 applied to any quantity indicates the difference between the asymptotic
" solution value and the background value and | indicates the interior product (or
contraction) of a vector field with a differential form. By matching the value of this
energy expression for our asymptotic solutions with the expected value m for a test
mass we can find one further scale restriction on the parameters.

For the asymptotically Newtonian limit, 1/R*-0, we obtain, in general,

B=m| — A H A= AN+ 9) +5 A+ A~ 29) . (6-2)

Setting E=m and using the conditions (4-16), (4-18) giveé
Ao: -1 . N (6' 3)

independently of the values of the free torsion parameters.
For the case of asymptotically constant torsion solutions we obtain

E=m — A= (A= A +0) +§ QA+ AN ~29)| (6-4)

Using conditions (5-2), (5-3), Table IIT and E=m then gives
A=A=—1, (6-5)

independently of the values of the free torsion parameters in the solutions.
The asymptotically constant curvature case is, not surprisingly, more compli-
cated. The general value for the energy expression can be expressed in the alternate
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forms:

E= m[ —AO_%(AO_AI)(f—}—g) +_613‘(2A0+A2)(f_ 29)]
+ 1B~ B+ g+ D)+ (Bt Ba(7 =), . 66w
=m[—AO+K—Zf(BI—Bs)(f +9+2)]

Pl e —20)+ dilf -, C (6+6D)

—g A AN +a)+
= — Aot—o (Bi= B +9+2)]
KREY 0

P AN+ 0) e+ )+ Bert 2d)(F -], (6-6)

which are convenient for evaluation. In each of the cases in Table I the last term in

Eq. (6-5b) or (6-5¢) clearly vanishes so the total energy reduces to

E=m| — A (A= AN +0) +ea(Bi= B ++2) . (6+7)

Note that for asymptotically constant curvature, in contrast to constant torsion
or zero curvature, the total energy does depend on the solution parameters f, g except
for the special case ‘

#(AO—AI)—fﬁz—(Bi—Bsho . (6-8)

We also note that the total energy depends on the PGT parameter B: which does not
appear in the asymptotic constant curvature conditions. Perhaps more significantly,
we have found that the total energy depends upon the asymptotic value of the
curvature R™2 unless f+g¢+2=0. In this special case £=— Aim, which leads to the
condition Ai=—1. (The condition f+g=—2 is satisfied by the torsion for the known
exact PGT anti-de Sitter solution.'?) .

~ Finally, we note that (i) in all cases the solution parametersp, q, S, f, h, £ do not
make any contribution to the energy expressions; (ii) for anti-de Sitter space without
any torsion the total energy is ’

.
E=n|—AtioBi-B)|, (6:9)

to be matched with the value m. The values obtained here for the PGT theory‘ should-
be compared with the corresponding Einstein or ECSK theory results. For these two
special PGT theories all parameters vanish except Ao; the matching gives Ao=—1.
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§7. Conclusion

Gravitating systems which have solutions that are well behaved asymptotically
are of considerable interest. In particular, if the asymptotic Riemannian background
curvature vanishes or is a negative constant (i.e., anti-de Sitter space), total conserved
quantities can be defined and the gravitational field appears to have a point source and -
is thus a natural generalization of an asymptotically Newtonian field. _

Here we have considered the Poincaré Gauge Theory (PGT), a promising alterna-
tive to Einstein’s theory. We have investigated the necessary conditions on the ten
PGT parameters which permit solutions with an asymptotically anti-de Sitter metric.

For the Riemann-Cartan geometry of the PGT we have found that there are two

possible types of background. Either the Riemann-Cartan curvature has the same
constant value asymptotically as the Riemannian curvature or the Riemann-Cartan
curvature vanishes asymptotically (i.e., the geometry is asymptotically teleparallel).
- For each case, not surprisingly, the asymptotic solutions to the PGT theory must
satisfy a restriction connecting the cosmological constant with the asymptotic value
of the Riemannian scalar curvature. Furthermore, the ten PGT parameters must
satisfy from one to three additional conditions. In each case the solutions have at
least one free constant. All possible spherically symmetric cases have been tabulated
in Tables I, IT and III for both SO(3) and O(3) symmetry.

By matching the total energy of a test mass, as obtained from an integral over the
2-sphere at infinity, with the known physical value, we have obtained one additional
restriction setting the scale of the dimensionless PGT parameters.

Naturally, known exact solutions fit into the possible cases which we have found.
However, we have found other cases of parameter values which permit solutions with
asymptotically anti-de Sitter behavior for which there is, as yet, no known exact
solution. Hence our work reveals possibilities for finding new exact solutions for the
PGT. '

To our knowledge, aside from our positive energy test results,” our results
presented here are the only available set of conditions on the 10 PGT parameters for
~ the important case of solutions with asymptotically anti-de Sitter boundary condi-
tions. Of course other restrictions can and should be found by applying other criteria
just as in the asymptotically flat case.®®~1) :

We recall that in the asymptotically flat case overlooking the required asymptotic
conditions led to the relative neglect of the physically more interesting possibilities.
Asymptotically flat solutions are possible only if one or more parameter combinations
vanish. These parameter combinations turn out to be the same as certain combina-
tions which play an important role in the linearized theory where they have a physical
interpretation as the “masses” of the linearized modes.”®® These same combina-
tions also play an important role in the Hamiltonian analysis'®'" of asymptotically
flat solutions.

We expect that similar important roles are played by the various parameter
combinations which we have identified here as necessary conditions for asymptotical-
ly anti-de Sitter PGT solutions. '
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