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- Prelude N

+ General relativity [Einstein,1915] is a dynamical theory of
spacetime.

4+ General relativity is a very successful classical field theory.

+ Schwarzschild [1916]:
2GM

r

ds* = —(1 dr? + r(d6* + sin® 0d¢?)

2
)dt™ + 1 _ 2GM

T

e r = 2GM: horizon; r = 0: singularity.

4+ Pattern Singularity Theorem:
If a spacetime of sufficient differentiability satisfies

e a condition on the curvature

e a causality condition
e and an appropriate initial and/or boundary condition

then there are null or timelike inextensible incomplete geodesics.

= Singularities are unavoidable in GR.

4+ GR can not be complete! It predicts its own breakdown.
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+ Cosmic Censorship Conjecture [Penrose|: "Naked singularities

cannot form from gravitational collapse in an asymptotically flat

spacetime that is non-singular on some initial spacelike hypersurface.”

e Certain types of "trivial’ naked singularities must be excluded.

e Initial, cosmological, singularities are excluded.

e There is no proof. This is the major unsolved problem in classical

GR.

4+ Why does one want to go beyond general relativity?

4 One of the big challenges in physics:

how to make general relativity consistent with quantum mechanics?
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Black hole thermodynamics
4 )
4+ Hawking (1972): the area of the event horizon of a black hole cannot

decrease.

4 Bekenstein (1973): associate an entropy to a black hole

Spy = kA
4+ Hawking (1975): black hole temperature 7" = ——+,
1 1
SBH = 1:1

4 What are the microscopic degrees of freedom responsible for this
entropy?

4 What are the higher order corrections to the Benkenstein-Hawking
entropy formula?
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Sketch of canonical quantization

~ N

4 Pick a Poisson algebra of classical quantities.

4 Represent these quantities as quantum operators acting on
a space of quantum states.

4 Implement any constraint you may have as a quantum
operator equation and solve for the physical states.

4 Construct an inner product on physical states.

4 Develop a semiclassical approximation and compute
expectation values of physical quantities.
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Canonical analysis in ADM variable

4+ Einstein-Hilbert action [in metric variables]

o) = —— [ d'sy=g(R —2)

4 ADM Decomposition: introduce a foliation of spacetime M = X X R
® G — Qab, N, : shift function, N: laspe function.
o ds? = g datdz” = —N*(da®)? + qup(dz® + Ndz®)(dz® + N'dz”)

B Qab‘NQ‘NE} . f\TE Qabﬁm v _1}/&3’2 Na/N:z
Guv = qabhrb Gub 1 4 - N’b}/ﬁr? qab _ hrahrb/ﬁ,rz

4+ After performing the Legendra transformation:

I[q-ﬂb:“ ba*:\a *\ fdt/d '-T?T QGb_H]
167

o 7 = ~ 167

C(K“b Kq®) : momenta canonically conjugate to qu,
k K, = QN( —0oqab + ValNy + VN, ) : extrinsic curvature.
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\

H(Qab: ﬂ-ab: J'?\'Tﬂ:u J'IT\'T) — *NTGHH (q{lbﬂ ﬂ-ab) + *'NTH(QGE:: ﬂ'ab)

e Super-momentum constraint: H,(qu,, ™) = —ﬁvbwi (= 0)

e Super-Hamiltonian constraint:

“ 8 I q ‘
H(QRﬁEW b) — \/E (‘gaaq{:d T Gaddbe — ngQCd)W et — 1%’:;6 (R(Q) - 2ﬁ-)
_ \/a ~ab 1~ -2 'Sy
= 1670 (KK — K° — R(q) +2A] (=0)

4 Degrees of freedom of GR in 4D:
6 pairs (qu. ™) subject to 4 constraints = 2 FIELD d.o.f.

4 T he Poisson brackets are
(1 (z), qa(v)} = 16??5&53]5(;1?, Y),
{QGB(;F}? ch(y)} — {ﬂab(I)& ?TCd(y)} =0

4 Phase space variables: (q.-:gbj TTCd)
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Canonical Quantization of GR

4 | | | ™

4 Does not require background spacetime (background independence)

4 Can be used for strong and weak GR fields.

4 Conjugate variables:
= ed (3 1 c c = 5
(4al@). 7D rn. = 50,0 +8,0,95°F )

4 Canonical Quantization :

| 1 . N
{ s }P.B. — _[ s ]a Tab — Gab: ﬂ'ab — ﬂ.ab

th
4 Metric representation: Wavefunction W|q,]
® GubV[qab) = @bV (qas) i TPVU[qup] = ﬁgq_b W[ qas)
4 Constraints (First Class) (Dirac Quantization):
Heo(Gat 7#) U [qap) = Ho(Gabs = T S b)‘l [gab) =0

< V¢, = Y|qas] If qup 1s related to ¢/, by a 3-dimensional
diffeomorphism
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< U|G]. 3-geometry G € SUPERSPACE:
Space of all 3-geometries (equivalence class of 3-metrics) ¢/, ~ G

Iff they are related by 3-dim. general coordinate transformation.

4+ Constraint Algebras (Classical):
(Definition: H,[N?| = [, NY(Z)H,(Z)d’z Y= Cauchy surface)

e Dirac Algebra (EXplICIHy with (g, ™) conjugate pair and Einstein's

theory)
{HJN, Hy[M®}pp. = —H,[(LyM)]
{Ho|N®],H[M]|}pPB. —H[(LgM)]
{H[N],HM|}pp —H,[(q"(NO,M — M3,N))]

4 Quantum super-Hamiltonian Constraint: Wheeler-DeWitt Equation

b 9
R(q) — 2A)|"¥ |G| =0
55+ VilRla) 200G

V [Cabcd
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Supermetric Gopeq = %(Qac%d + QudQbe — Qabled)-

Symbolically,
52

55 + (R() —20)0(g) =0

4 Technical issues:

Ordering, Regularization, Anomalies, Explicit Solutions, of
Wheeler-DeWitt Equation.

4 Important conceptual issues: Where/what is physical "time” in
Quantum Gravity?

e Note: 2V is not "time". Theory is reparametrization Invariant.

H does not generate "time” translation: exp (=% H)‘l’[g] = V|G|

4+ B. S. DeWitt [Phys. Rev. 160, 1113 (1967)]:
Supermetric G*43q,,0q.q = —(d€)? + (%)52@‘4355‘4553 le.
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GUPHedt = diag(—1, 2€°Gap) ; A, B =1,2.3,4,5

G 4p. positive-definite = supermetric has signature (—, +, 4+, ).
”» —” direction is associated with "intrinsic time" & = \/32/3(det ¢)/*.

Superspace is hyperbolic.

Super-Hamiltonian constraint has " dynamical” content.

Wheeler-DeWitt Equation:

2 ‘ 2
::[_ fS 4+ 32 CAB 5 5 35
0E2  3&2 6&A 5£B

5y (Lile) = 20)]"V(G] =

In simple homogeneous isotropic cosmological models (e.g. of
minisuperspace), & o< [a(t)]*/? (a = expansion scale factor).

~
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The triad formulation

-

4 To use a triad (a set of 3 1-forms at each point in X))

Qab = €-€]0;

e Densitized triad: Ef = ab“’fgﬁiﬁf

e Additional 3 (Gauss) constraints: G;(ES, K]) = € E“KF =0
4+ With new variables, the action of GR becomes
I[E‘”’ K?,N,, N, N’| /dffaﬁ E“I\”
— Tbe(E“ K’) — NH( EY, K’) — N'G; E‘51 LK)
The sympletic structure now becomes
(E2(2), Ki(y)} = Smopoid(z,y).
{Ej(2). Ei(y)} = {K}(z),Ky(y)}=0
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The Ashtekar-Barbero connection variables

-

4+ There is a natural so(3)-connection (spin-connection I'}) that defines
the notion of covariant derivative compatible with the dreibein

a[aei] + Eijkf’faef] =
e Ashtekar-Barbero variable: A° =T + K"
e v : Immirzi parameter, v € R — {0}.

4 With the connection variables, the action becomes
[E”’ Ai‘,ﬂ* [0y N ,,Nj /dt/d3 EﬂA‘i
Th a ' a TL oY a ]
—NYH,(E®, A}) — N H(Ej,A-;) — N'G,(E}, A))]

o Hy(E% Al) = E*F’, — (1++*)K,G; =0

S ECEY | 5 g o i 1
o H(E}, A) = _L,m(‘fjkﬂihb —2(1+ ’}"Z)K[QKE]}]) =

\

~
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e where [, = 9, A; — O, AL + EijkAgA‘E and
D,E} = 0,E} + ¢,;* AL B}
4 [ he Poisson bracket of the new variables are
(E2(2), Ai(y)} = 8my0oid(a,y),
{E$(x), E}(y)} = {Al(z),A(v)} =0

4 Phase space variables: (AEJEEJ

4+ Series of (Canonical) transformations:
* (qab, ™)
— (€4i, ™)+ 3 gauge constraints (Gauss' Law)
— (B¢, K')+ Gauss' Law
— (B*,A'~ =T" —iK")+ Gauss' Law (Ashtekar Variable)
— (B, AL =T + vK!)+ Gauss' Law (Ashtekar-Barbero Variable)

a

(related discussion: C.H.C, R.H. Tung, H. L. Yu, PRD 72, 064016 (2005))
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Conceptual Breakthroughs

-

4 Distinction between geometrodynamics and gauge
dynamics is bridged. Identify £% as the momentum
conjugate to the gauge potential A’ ;
= (B, A') phase space identical to Yang-Mills Theory.

4 Quantum States can be wavefunctions in A-representation

U[A], with Ef = (¥25") 5. All manipulations done on

gauge variables.
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\

Technical Breakthroughs

Constraints much simpler:
Exact solution found (e.g. Chern-Simons state, in field theory variables)

Loop variables: Wilson loops: holonomy elements.
e Gauss's constraint solved by W[Wilson loops in A] ;

e H, = 0 solved by W[knot classes of Wilson loops in A].

Super-Hamiltonian constraint still difficult, but can be made

well-defined:
e Volume V' and area A operators : well-defined operators acting on

loop and spin network states and have discrete spectra.

Derivation of horizon entropy, both for black hole and cosmological

horizons.
e Black hole evaporation via transition from higher A states to lower

A states.
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e Matching Bekenstein-Hawking entropy formula for large black holes

A

kB In N = SBH ~ kB(LLF)

2
A> 1,

including quantum logarithmic correction when A is small,

A
Spy = ;I.,B(E) — :rIvB lllﬁ + K.

(related discussion: C.H.C, Y. Ling, C. Soo, H. L. Yu, PLB 637, 12 (2006))

4 Resolution of big-bang singularity, curvature bounded and

not divergent. (Bojowald)

4 Addressing black hole singularity (Ashtekar and Bojowald):

Minisuperspace (spherical symmetric) investigation.

Classical black hole singularity does not seem to pose difficulties to

quantum evolution of wavefunction.

~
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The construction of LQG

4 N\
4 Holonomy:

UlA.+](s) = P exp / A=Pexp / ds" Al (v(s))7

!

4 The key idea of LQG is to choose the loop states as the
basis states for quantum gravity

Uo(A) =TrU[A,~](s)

4 The spin network state Wg(A): a cylindrical function fg
assoclated to spin network S whose graph is I’

IIJS(A) — lItl_‘;fs (A) — fS(U[Ar/YlL e U[A: 7’:‘1])

\ _/

Chung-Hsien Chou Quantum Geometry and black holes Oct 5, 2004




Quantization of area

~ N

4 Rovelli and Smolin (1994); Ashtekar, Lewandowski et al (1995): given
a surface

A(S):/;\/'nﬂElebE,?dEU

4 The quantum area spectrum is

A(S)|S) =87y Y +/ir(ir +1)|5)

4+ Why is geometry discrete ?

e The value of a triad in a given point Is conjugate to the connection
in the same point but Poisson commute with values of the

connection in any other points.
e The flux operator will only notice intersection points.

e [he eigenvalues of the flux operator: discrete.

e [riad — metric — length, area, volume.... Geometry is discrete.
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e The result i1s topological and background independent.

e The spin of the lines of a spin network can be viewed as
"quanta of area”.
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- Quantum Geometry and Schwarzschild Singularity N

4 In connection dynamics the spherical symmetric connection 1-form A’
and triad E are given by:

A = cmdr + (am + brp)dl + (—bm + amy) sin Odp + 13 cos Odp

18 18
E = p.713sin QE + (Pa1 + Po72) sint?% + (—pp71 + PaT2) sin Odyp

the corresponding co-triad w:
w = weT3dr + (WeT1 + wpT2)dO + (—wpm1 + W, o) sin Odyp

where

. = ‘pc ‘pa. Wy, = |pc ‘pb_ . :S_gnpc\/m
A voi+e o | pe |

YK :=A—T = cemsde + (amy + bre)df + (—bmy + at) sin 8dy

4 The Super-Hamiltonian constraint now becomes

2cpe(apa + bpy) + (2 + pp)(@® + 0> +77) =0
\_ : ),
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Due to the symplectic structure of the phase space

Q_

+ 2db A dpy + de A dp,)
'}G

4 Changing of variables and performing canonical quantization

Pa = T; Py = U, Pe = 2

2 _hd _ % _hd _ ¢ _hd _
2’}-’G 1 0x = Pa Qr:,-G o Edy = Pys 2"}"@ D S EE = P2;
2 2 2 2
: y pw+p T+
2p-(zps + ypy) + (@ + v°)( ) + A

4 4G

4 Let 2 =rcosf,y =rsinf, we have
Jd o 1 c} %, r?

S _ b( _0
[ d/_,rd]" 4 d; or + 4&203] (T, ,Z)

This is our Wheeler-De Witt equation for the spherical symmetric case.
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4 One of the solution to this equation Is

7] [] l I?-‘E 7] []
O(r.z) = Cexplkz'/? + ———,71/2
(r:2) exp (k21" + k 4h?G*? ]
where C, k are constants in 7, 2.

4 The solution ®(r, z) can be written in the form which satisfies the
Hamilton-Jacobi equation where
e 1 7 s .S
d(r,z) = Cexp [kz'/? + - ' 2712 = Cexp ©

k 4h?G? h
h. 1 r? |
S=—lkz'?+ = —1/2
ST T
dS h.orz12 08 b kz—1/2  p2,-3/2
= or ~ E[Qkﬁ?@?]’ A E[ 9 gk_hEGE]’

One can show that it satisfies

1
ZP.TDr + ilrp*r'rpr + 1G2 = 0

_/

Chou Quantum Geometry and black holes

Oct 5, 2001



Summary

-

4+ Canonical formulation: 4 = (3 + 1)
From (¢, 7) = (E, A)
= Loop Quantum Gravity

= Geometric quantities are discrete.
4 Black Hole entropy counting. Higher-order corrections.

4 Exact semiclassical solution for the Wheeler-DeWitt
Equation for a spherical symmetric Schwarzschild black
hole In connection representation Is obtained.

4 Quantum Gravity as Quantum theory of connections W|A].
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