Quantum Geometry and black holes

Chung-Hsien Chou

Institute of Physics, Academia Sinica, Taiwan, ROC

Oct 5, 2006 NTHU HEP seminar

- ◆ Introduction
- ADM formulation
- ◆ Canonical Quantization
- From Metric to Connection
- ◆ Quantum Geometry and Black Holes
- ◆ Summary and Conclusion

Prelude

- ◆ General relativity [Einstein,1915] is a dynamical theory of spacetime.
- ◆ General relativity is a very successful classical field theory.
- ◆ Schwarzschild [1916]:

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \frac{1}{1 - \frac{2GM}{r}}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

- r = 2GM: horizon; r = 0: singularity.
- ◆ Pattern Singularity Theorem:

If a spacetime of sufficient differentiability satisfies

- a condition on the curvature
- a causality condition
- and an appropriate initial and/or boundary condition

then there are null or timelike inextensible incomplete geodesics.

- ⇒ Singularities are unavoidable in GR.
- ◆ GR can not be complete! It predicts its own breakdown.

- ◆ Cosmic Censorship Conjecture [Penrose]: "Naked singularities cannot form from gravitational collapse in an asymptotically flat spacetime that is non-singular on some initial spacelike hypersurface."
 - Certain types of "trivial" naked singularities must be excluded.
 - Initial, cosmological, singularities are excluded.
 - There is no proof. This is the major unsolved problem in classical GR.
- ♦ Why does one want to go beyond general relativity?
- ♦ One of the big challenges in physics: how to make general relativity consistent with quantum mechanics?

Black hole thermodynamics

- → Hawking (1972): the area of the event horizon of a black hole cannot decrease.
- ◆ Bekenstein (1973): associate an entropy to a black hole

$$S_{BH} = kA$$

♦ Hawking (1975): black hole temperature $T = \frac{1}{8\pi M}$,

$$S_{BH} = \frac{1}{4}A$$

- What are the microscopic degrees of freedom responsible for this entropy?
- What are the higher order corrections to the Benkenstein-Hawking entropy formula?

Sketch of canonical quantization

- ◆ Pick a Poisson algebra of classical quantities.
- Represent these quantities as quantum operators acting on a space of quantum states.
- Implement any constraint you may have as a quantum operator equation and solve for the physical states.
- Construct an inner product on physical states.
- ◆ Develop a semiclassical approximation and compute expectation values of physical quantities.

Canonical analysis in ADM variable

◆ Einstein-Hilbert action [in metric variables]

$$I[g_{\mu\nu}] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} (\mathcal{R} - 2\Lambda)$$

- lacktriangle ADM Decomposition: introduce a foliation of spacetime $\mathcal{M} = \Sigma \times R$
 - $g_{\mu\nu} \to q_{ab}$, N_a : shift function, N: laspe function.
 - $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = -N^2(dx^0)^2 + q_{ab}(dx^a + N^a dx^0)(dx^b + N^b dx^0)$

$$g_{\mu\nu} = \left(\begin{array}{ccc} q_{ab} N^a N^b - N^2 & q_{ab} N^a \\ q_{ab} N^b & q_{ab} \end{array} \right), g^{\mu\nu} = \left(\begin{array}{ccc} -1/N^2 & N^a/N^2 \\ N^b/N^2 & q^{ab} - N^a N^b/N^2 \end{array} \right)$$

◆ After performing the Legendra transformation:

$$I[q_{ab}, \pi^{ab}, N_a, N] = \frac{1}{16\pi} \int dt \int_{\Sigma} d^3x [\pi^{ab} \dot{q}_{ab} - \mathcal{H}]$$

• $\pi^{ab} = -\frac{\sqrt{q}}{16\pi G}(K^{ab} - Kq^{ab})$: momenta canonically conjugate to q_{ab} , $K_{ab} = \frac{1}{2N}(-\partial_0 q_{ab} + \nabla_a N_b + \nabla_b N_a)$: extrinsic curvature.

$$\mathcal{H}(q_{ab}, \pi^{ab}, N_a, N) = N^a \underline{H}_a(q_{ab}, \pi^{ab}) + N\underline{H}(q_{ab}, \pi^{ab})$$

- Super-momentum constraint: $H_a(q_{ab},\pi^{ab})=-\frac{2}{16\pi G}\nabla_b\pi^b_a$ (= 0)
- Super-Hamiltonian constraint:

$$\begin{split} & \pmb{H}(q_{ab}, \pi^{ab}) &= \frac{8\pi G}{\sqrt{q}} (q_{ac}q_{bd} + q_{ad}q_{bc} - q_{ab}q_{cd}) \pi^{ab}\pi^{cd} - \frac{\sqrt{q}}{16\pi G} (R(q) - 2\Lambda) \\ &= \frac{\sqrt{q}}{16\pi G} [K^{ab}K_{ab} - K^2 - R(q) + 2\Lambda] \quad \textbf{(= 0)} \end{split}$$

◆ Degrees of freedom of GR in 4D:

6 pairs (q_{ab}, π^{ab}) subject to 4 constraints = 2 FIELD d.o.f.

◆ The Poisson brackets are

$$\{\pi^{ab}(x), q_{cd}(y)\} = 16\pi \delta^a_{(c} \delta^b_{d)} \delta(x, y),$$

$$\{q_{ab}(x), q_{cd}(y)\} = \{\pi^{ab}(x), \pi^{cd}(y)\} = 0$$

♦ Phase space variables: (q_{ab}, π^{cd})

Canonical Quantization of GR

- ◆ Does not require background spacetime (background independence)
- ◆ Can be used for strong and weak GR fields.
- ◆ Conjugate variables:

$$\{q_{ab}(\vec{x}), \pi^{cd}(\vec{y})\}_{P.B.} = \frac{1}{2} (\delta_a{}^c \delta_b{}^d + \delta_b{}^c \delta_a{}^d) \delta^3(\vec{x} - \vec{y})$$

◆ Canonical Quantization :

$$\{\ ,\ \}_{P.B.} \to \frac{1}{i\hbar}[\ ,\]; \quad q_{ab} \to \hat{q}_{ab}, \quad \pi^{ab} \to \hat{\pi}^{ab}$$

- lacktrice Metric representation: Wavefunction $\Psi[q_{ab}]$
 - $\hat{q}_{ab}\Psi[q_{ab}] = q_{ab}\Psi[q_{ab}]$; $\hat{\pi}^{ab}\Psi[q_{ab}] = \frac{1}{i\hbar}\frac{\delta}{\delta q_{ab}}\Psi[q_{ab}]$
- ◆ Constraints (First Class) (Dirac Quantization):

$$\hat{H}_a(\hat{q}_{ab}, \hat{\pi}^{ab})\Psi[q_{ab}] = \hat{H}_a(\hat{q}_{ab}, \frac{1}{i\hbar} \frac{\delta}{\delta q_{ab}})\Psi[q_{ab}] = 0$$

 $\Leftrightarrow \Psi[q'_{ab}] = \Psi[q_{ab}]$ if q_{ab} is related to q'_{ab} by a 3-dimensional diffeomorphism

 $\Leftrightarrow \Psi[\mathcal{G}]$. 3-geometry $\mathcal{G} \in \mathsf{SUPERSPACE}$:

Space of all 3-geometries (equivalence class of 3-metrics) $q'_{ab} \sim q_{ab}$ iff they are related by 3-dim. general coordinate transformation.

◆ Constraint Algebras (Classical):

(Definition: $H_a[N^a] \equiv \int_{\Sigma} N^a(\vec{x}) H_a(\vec{x}) d^3x$ $\Sigma =$ Cauchy surface)

• Dirac Algebra (explicitly with (q_{ab},π^{ab}) conjugate pair and Einstein's theory)

$$\begin{aligned}
\{H_a[N^a], H_b[M^b]\}_{P.B.} &= -H_a[(\mathcal{L}_{\vec{N}}M)^a] \\
\{H_a[N^a], H[M]\}_{P.B.} &= -H[(\mathcal{L}_{\vec{N}}M)] \\
\{H[N], H[M]\}_{P.B.} &= -H_a[(q^{ab}(N\partial_b M - M\partial_b N))]
\end{aligned}$$

◆ Quantum super-Hamiltonian Constraint: Wheeler-DeWitt Equation

"
$$[G_{abcd}\frac{\delta}{\delta q_{ab}}\frac{\delta}{\delta q_{cd}} + \sqrt{q}(R(q) - 2\Lambda)]$$
" $\Psi[\mathcal{G}] = 0$

Supermetric
$$G_{abcd} = \frac{8\pi G}{\sqrt{q}}(q_{ac}q_{bd} + q_{ad}q_{bc} - q_{ab}q_{cd}).$$

Symbolically,

$$\left[\frac{\delta^2}{\delta \mathcal{G}^2} + (R(q) - 2\Lambda)\right] \Psi[\mathcal{G}] = 0$$

◆ Technical issues:

Ordering, Regularization, Anomalies, Explicit Solutions, of Wheeler-DeWitt Equation.

- ◆ Important conceptual issues: Where/what is physical "time" in Quantum Gravity?
 - Note: x^0 is not "time". Theory is reparametrization invariant. H does not generate "time" translation: $\exp{(\frac{-ix^0H}{\hbar})}\Psi[\mathcal{G}] = \Psi[\mathcal{G}].$
- ♦ B. S. DeWitt [Phys. Rev. **160**, 1113 (1967)]: Supermetric $G^{abcd}\delta q_{ab}\delta q_{cd} = -(\delta \xi)^2 + (\frac{3}{32})\xi^2 \bar{G}_{AB}\delta \xi^A \delta \xi^B$ i.e.

 $G^{\{ab\}\{cd\}} = diag(-1, \frac{3}{32}\xi^2\bar{G}_{AB})$; A, B = 1, 2, 3, 4, 5.

 \bar{G}_{AB} : positive-definite \Rightarrow supermetric has signature (-,+,+,+,+,+).

"-" direction is associated with "intrinsic time" $\xi = \sqrt{32/3}(\det q)^{1/4}$.

Superspace is hyperbolic.

Super-Hamiltonian constraint has "dynamical" content.

Wheeler-DeWitt Equation:

In simple homogeneous isotropic cosmological models (e.g. of minisuperspace), $\xi \propto [a(t)]^{3/2}$ (a = expansion scale factor).

The triad formulation

lacktriangle To use a triad (a set of 3 1-forms at each point in Σ)

$$q_{ab} = e_a^i e_b^j \delta_{ij}$$

- Densitized triad: $E_i^a = \frac{1}{2} \epsilon^{abc} \epsilon_{ijk} e_b^j e_c^k$
- Additional 3 (Gauss) constraints: $G_i(E^a_j, K^j_a) = \epsilon_{ijk} E^{aj} K^k_a = 0$
- With new variables, the action of GR becomes

$$I[E_{j}^{a}, K_{a}^{j}, N_{a}, N, N^{j}] = \frac{1}{8\pi} \int dt \int_{\Sigma} d^{3}x [E_{i}^{a} \dot{K}_{a}^{i} - N^{b} H_{b}(E_{j}^{a}, K_{a}^{j}) - N H(E_{j}^{a}, K_{a}^{j}) - N^{i} G_{i}(E_{j}^{a}, K_{a}^{j})]$$

The sympletic structure now becomes

$$\begin{aligned}
\{E_j^a(x), K_b^i(y)\} &= 8\pi \delta_b^a \delta_j^i \delta(x, y), \\
\{E_j^a(x), E_i^b(y)\} &= \{K_a^j(x), K_b^i(y)\} = 0
\end{aligned}$$

The Ashtekar-Barbero connection variables

♦ There is a natural so(3)-connection (spin-connection Γ_a^i) that defines the notion of covariant derivative compatible with the dreibein

$$\partial_{[a}e^i_{b]} + \epsilon^i_{jk}\Gamma^j_{[a}e^k_{b]} = 0$$

- ullet Ashtekar-Barbero variable: $A_a^i = \Gamma_a^i + \gamma K_a^i$
- γ : Immirzi parameter, $\gamma \in R \{0\}$.
- ♦ With the connection variables, the action becomes

$$I[E_{j}^{a}, A_{a}^{j}, N_{a}, N, N^{j}] = \frac{1}{8\pi} \int dt \int_{\Sigma} d^{3}x [E_{i}^{a} \dot{A}_{a}^{i}]$$
$$-N^{b} H_{b}(E_{j}^{a}, A_{a}^{j}) - N H(E_{j}^{a}, A_{a}^{j}) - N^{i} G_{i}(E_{j}^{a}, A_{a}^{j})]$$

- $H_b(E_j^a, A_a^j) = E_j^a F_{ab}^j (1 + \gamma^2) K_b^i G_i = 0$
- $H(E_j^a, A_a^j) = \frac{E_i^a E_j^b}{\sqrt{\det(E)}} (\epsilon^{ij}_{\ k} F_{ab}^k 2(1 + \gamma^2) K_{[a}^i K_{b]}^j) = 0$
- $\bullet G_i(E_i^a, A_a^j) = D_a E_i^a = 0$

- where $F^i_{ab} = \partial_a A^i_b \partial_b A^i_a + \epsilon^i_{\ jk} A^j_a A^k_b$ and $D_a E^a_i = \partial_a E^a_i + \epsilon_{ij}^{\ k} A^j_a E^a_k$
- ◆ The Poisson bracket of the new variables are

$$\begin{aligned}
\{E_j^a(x), A_b^i(y)\} &= 8\pi \gamma \delta_b^a \delta_j^i \delta(x, y), \\
\{E_j^a(x), E_i^b(y)\} &= \{A_a^j(x), A_b^i(y)\} = 0
\end{aligned}$$

- ♦ Phase space variables: (A_a^i, E_i^b)
- ◆ Series of (Canonical) transformations:

Metric variables: (q_{ab}, π^{ab})

- $\rightarrow (e_{ai},\pi^{ai})+$ 3 gauge constraints (Gauss' Law)
- $\rightarrow (E_i^a, K_a^i) + \mathsf{Gauss'} \mathsf{Law}$
- $\rightarrow (E_i^a, A_a^{i} \Gamma_a^i iK_a^i) + \text{Gauss' Law (Ashtekar Variable)}$
- $\rightarrow (E_i^a, A_a^i = \Gamma_a^i + \gamma K_a^i) + \text{Gauss' Law (Ashtekar-Barbero Variable)}$

(related discussion: C.H.C, R.H. Tung, H. L. Yu, PRD 72, 064016 (2005))

Conceptual Breakthroughs

- ♦ Distinction between geometrodynamics and gauge dynamics is bridged. Identify E^a_j as the momentum conjugate to the gauge potential A^i_a ; $\Rightarrow (E^a_j, A^i_a)$ phase space identical to Yang-Mills Theory.
- Quantum States can be wavefunctions in A-representation $\Psi[A]$, with $E_i^a = (\frac{8\pi G\hbar}{c^3})\frac{\delta}{\delta A_a^i}$. All manipulations done on gauge variables.

Technical Breakthroughs

- ◆ Constraints much simpler:
- ◆ Exact solution found (e.g. Chern-Simons state, in field theory variables)
- ◆ Loop variables: Wilson loops: holonomy elements.
 - ullet Gauss's constraint solved by $\Psi[\mathsf{Wilson\ loops\ in\ }A]$;
 - $H_a = 0$ solved by $\Psi[\mathsf{knot}\ \mathsf{classes}\ \mathsf{of}\ \mathsf{Wilson}\ \mathsf{loops}\ \mathsf{in}\ A].$
- Super-Hamiltonian constraint still difficult, but can be made well-defined:
 - ullet Volume V and area ${\mathcal A}$ operators : well-defined operators acting on loop and spin network states and have discrete spectra.
- Derivation of horizon entropy, both for black hole and cosmological horizons.
 - ullet Black hole evaporation via transition from higher ${\cal A}$ states to lower ${\cal A}$ states.

Matching Bekenstein-Hawking entropy formula for large black holes

$$k_B \ln N = S_{BH} \approx k_B(\frac{\mathcal{A}}{4l_p^2}); \quad \mathcal{A} \gg l_p^2,$$

including quantum logarithmic correction when ${\cal A}$ is small,

$$S_{BH} = k_B(\frac{A}{4l_p^2}) - \frac{1}{2}k_B \ln \frac{A}{4l_p^2} + K_0.$$

(related discussion: C.H.C, Y. Ling, C. Soo, H. L. Yu, PLB 637, 12 (2006))

- Resolution of big-bang singularity, curvature bounded and not divergent. (Bojowald)
- ◆ Addressing black hole singularity (Ashtekar and Bojowald): Minisuperspace (spherical symmetric) investigation. Classical black hole singularity does not seem to pose difficulties to quantum evolution of wavefunction.

The construction of LQG

✦ Holonomy:

$$U[A,\gamma](s) = \mathcal{P} \exp \int_{\gamma} A = \mathcal{P} \exp \int_{\gamma} ds \dot{\gamma}^a A_a^i(\gamma(s)) \tau_i$$

◆ The key idea of LQG is to choose the loop states as the basis states for quantum gravity

$$\Psi_{\alpha}(A) = TrU[A, \gamma](s)$$

lacklash The spin network state $\Psi_S(A)$: a cylindrical function f_S associated to spin network S whose graph is Γ

$$\Psi_S(A) = \Psi_{\Gamma, f_S}(A) = f_S(U[A, \gamma_1], ..., U[A, \gamma_n])$$

Quantization of area

◆ Rovelli and Smolin (1994); Ashtekar, Lewandowski et al (1995): given a surface

$$A(\mathcal{S}) = \int_{\mathcal{S}} \sqrt{n_a E_i^a n_b E_i^b} d^2 \sigma$$

◆ The quantum area spectrum is

$$A(S)|S\rangle = 8\pi\gamma \sum_{P} \sqrt{j_P(j_P+1)}|S\rangle$$

- ♦ Why is geometry discrete?
 - The value of a triad in a given point is conjugate to the connection in the same point but Poisson commute with values of the connection in any other points.
 - The flux operator will only notice intersection points.
 - The eigenvalues of the flux operator: discrete.
 - Triad → metric → length, area, volume.... Geometry is discrete.

- The result is topological and background independent.
- The spin of the lines of a spin network can be viewed as "quanta of area".

Quantum Geometry and Schwarzschild Singularity

♦ In connection dynamics the spherical symmetric connection 1-form A_a^i and triad E_i^a are given by:

$$A = c\tau_3 dx + (a\tau_1 + b\tau_2)d\theta + (-b\tau_1 + a\tau_2)\sin\theta d\varphi + \tau_3\cos\theta d\varphi$$

$$E = p_c\tau_3\sin\theta \frac{\partial}{\partial x} + (p_a\tau_1 + p_b\tau_2)\sin\theta \frac{\partial}{\partial \theta} + (-p_b\tau_1 + p_a\tau_2)\sin\theta d\varphi$$

the corresponding co-triad ω :

$$\omega = \omega_c \tau_3 dx + (\omega_a \tau_1 + \omega_b \tau_2) d\theta + (-\omega_b \tau_1 + \omega_a \tau_2) \sin \theta d\varphi$$

where

$$\omega_{a} = \frac{\sqrt{|p_{c}|}p_{a}}{\sqrt{p_{a}^{2} + p_{b}^{2}}}; \quad \omega_{b} = \frac{\sqrt{|p_{c}|}p_{b}}{\sqrt{p_{a}^{2} + p_{b}^{2}}}; \quad \omega_{c} = \frac{sgnp_{c}\sqrt{p_{a}^{2} + p_{b}^{2}}}{\sqrt{|p_{c}|}}$$

$$\gamma K := A - \Gamma = c\tau_3 dx + (a\tau_1 + b\tau_2)d\theta + (-b\tau_1 + a\tau_2)\sin\theta d\varphi$$

◆ The Super-Hamiltonian constraint now becomes

$$2cp_c(ap_a + bp_b) + (p_a^2 + p_b^2)(a^2 + b^2 + \gamma^2) = 0$$

Due to the symplectic structure of the phase space

$$\Omega = \frac{L_0}{2\gamma G} (2da \wedge dp_a + 2db \wedge dp_b + dc \wedge dp_c)$$

Changing of variables and performing canonical quantization

$$p_a \equiv x; \quad p_b \equiv y; \quad p_c \equiv z;$$

$$\frac{2a}{2\gamma G} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x} \equiv p_x; \quad \frac{2b}{2\gamma G} \equiv \frac{\hbar}{i} \frac{\partial}{\partial y} \equiv p_y; \quad \frac{c}{2\gamma G} \equiv \frac{\hbar}{i} \frac{\partial}{\partial z} \equiv p_z;$$

$$zp_z(xp_x + yp_y) + (x^2 + y^2)(\frac{p_x^2 + p_y^2}{4}) + \frac{x^2 + y^2}{4G^2} = 0$$

ightharpoonup Let $x = r \cos \theta, y = r \sin \theta$, we have

$$\left[-z\frac{\partial}{\partial z}r\frac{\partial}{\partial r} - \frac{1}{4}r\frac{\partial}{\partial r}r\frac{\partial}{\partial r} + \frac{r^2}{4\hbar^2G^2}\right]\Phi(r,z) = 0$$

This is our Wheeler-De Witt equation for the spherical symmetric case.

◆ One of the solution to this equation is

$$\Phi(r,z) = C \exp\left[kz^{1/2} + \frac{1}{k} \frac{r^2}{4\hbar^2 G^2} z^{-1/2}\right]$$

where C, k are constants in r, z.

lacktriangle The solution $\Phi(r,z)$ can be written in the form which satisfies the Hamilton-Jacobi equation where

$$\Phi(r,z) = C \exp\left[kz^{1/2} + \frac{1}{k} \frac{r^2}{4\hbar^2 G^2} z^{-1/2}\right] \equiv C \exp\frac{iS}{\hbar}$$

$$S = \frac{\hbar}{i} \left[kz^{1/2} + \frac{1}{k} \frac{r^2}{4\hbar^2 G^2} z^{-1/2} \right]$$

$$p_r = \frac{\partial S}{\partial r} = \frac{\hbar}{i} \left[\frac{rz^{-1/2}}{2k\hbar^2 G^2} \right]; \quad p_z = \frac{\partial S}{\partial z} = \frac{\hbar}{i} \left[\frac{kz^{-1/2}}{2} - \frac{r^2z^{-3/2}}{8k\hbar^2 G^2} \right];$$

One can show that it satisfies

$$zp_z r p_r + \frac{1}{4} r p_r r p_r + \frac{r^2}{4G^2} = 0$$

Summary

- lacktriangle Quantum Gravity as Quantum theory of connections $\Psi[A]$.
- ♦ Canonical formulation: 4 = (3 + 1)

From
$$(q, \pi) \Rightarrow (E, A)$$

- ⇒ Loop Quantum Gravity
- ⇒ Geometric quantities are discrete.
- ◆ Black Hole entropy counting. Higher-order corrections.
- ◆ Exact semiclassical solution for the Wheeler-DeWitt Equation for a spherical symmetric Schwarzschild black hole in connection representation is obtained.