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® HIGH TEMPERATURE STRINGS

® STRING/BLACK HOLE CORRESPONDENCE

®@ HAGEDORN STRINGS ON ADS




A puzzle

e |f black hole can form at the LHC, then can field theory explain the Bekenstein-
Hawking entropy?

¢ For field theory, the entropy associated with the high energy states at energy E
is proportional to log E.

e However, the black hole entropy is proportional to E@-1/(d-2),

e Therefore, there is a mis-match in entropy for the process

a + b — virtual particles — black hole




High Temperature Strings




Peculiarity of string spectrum

e finite set of massless particles, i.e. gauge bosons, graviton
a
A e Guv
e exponential degeneracy of states at high energy (Hagedorn Spectrum)

BB with  Bs ~ I

e Hagedorn entropy
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e At high energy, the string behavior is very different from particle theory




Random Walk of a String

* The above Hagedorn spectrum can be understood as random walk in target
space since the energy of a string is proportional to the length of random walk:
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¢ in d non-compact dimensions
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Thermal Partition Function of String

e Counting the physical string states, the thermal partition function of a single
string is
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e Or using the path integral formulation
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Extract Hagedorn Behaviors

e Using free string gas (obeying Maxwell-Boltzmann statistics) approximation,
the free energy of string gas is

1 Z1(B)
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e Using the saddle-point approximation
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e There exists a Hagedorn critical temperature ( 72 ~ € ) V
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Thermal Winding Scalar

e The Hagedorn phase transition can be understood as the appearance of the
thermal tachyonic winding mode as T>TH
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set m =0, n =41, mass shell condition is
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Hagedorn Thermodynamics |

e From free energy we can evaluate the other thermodynamic quantities.
However, the canonical ensemble may break down if it is not equivalent to
micro-canonical ensemble. For d>2,
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¢ The specific heat from micro-canonical ensemble density of states is negative
and divergent at Hagedorn temperature, so the Hagedorn thermodynamics is
not well-defined. non= Ly
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Hagedorn Thermodynamics |l

e |f all the space are compact, the micro-canonical and canonical ensembles are
equivalent but the specific heat from micro-canonical ensemble is divergent for
all temperature, therefore, the Hagedorn temperature is limiting.

S'::logSI:::ﬁhql?, CR/ZZ

~ < W) NLiE-¢)
SUE)

%wmb 4a8  with
\awitovia L gy Azt bk ronn
Tov ot styes  of- s'\'ﬂw}s




Hagedorn Thermodynamics ll|

e \We can regularize the Hagedorn thermodynamics by compactifying the large
spatial dimensions, this introduce the sub-leading singularities in partition
function,
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Hagedorn Cosmology

e [n Brandenberger et al, they proposed a model using Hagedorn thermal
fluctuation to produce CMB spectrum
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However, the power spectrum is not scale-invariant!




String/Black Hole Correspondence




Bekenstein-Hawking v.s. Hagedorn

e The Bekenstein-Hawking entropy for AdSq+1-charged Schwarzschild black hole
(d>2)
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e Hagedorn entropy
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Horowitz-Polchinski

e |t suggests that there is a correspondence between Hagedorn strings and

black hole when
55 — 6BH

e This leads Horowitz and Polchinski (first by Susskind) to conjecture that a black
hole will turn into a single string when the size of the horizon is of order of
string length, e.g. d=3 (true for other d’s)




Hagedorn long string

¢ At the correspondence point, the black hole temperature is of order of string
scale, so the strings are in the Hagedorn regime. However, as in the earlier
discussions we see that the long string configurations dominate at Hagedorn

regime. This is also consistent with the random walk picture, i.e. diffusion of a
thermal scalar.

e At zero string coupling, the typical size of a Hagedorn string (diffusion length)
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Self interaction

e |[f we start with a long string, we may expect the string to condense into a
black hole. However, this is not the case if the string coupling is weak as
required by the Hoop conjecture.

e |t is interesting to see if there is a critical string coupling so that the long string
will collapse by self interaction and turn into a black hole as the size of the
string ball is of order of the Schwarzschild radius.

¢ The correspondence principle implies
/
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e However, some preliminary study for a thermal scalar coupled to gravity yields
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Hagedorn strings on AdS

Hagedorn Strings and Correspondence Principle in AdS(3).
Feng-Li Lin, Toshihiro Matsuo, Dan Tomino (Taiwan, Natl. Normal U.) . Jun 2007. 28pp.
e-Print: arXiv:0705.4514 [hep-th]

Thermal AdS(3), BTZ and competing winding modes condensation.
Micha Berkooz, Zohar Komargodski, Dori Reichmann (Weizmann Inst.) . WIS-06-07-JUN-DPP, Jun 2007. 40pp.
e-Print: arXiv:0706.0610 [hep-th]

Winding tachyons in BTZ.
Mukund Rangamani, Simon F. Ross (Durham U. & Durham U., Dept. of Math.) . DCPT-07-21, Jun 2007. 37pp.
e-Print: arXiv:0706.0663 [hep-th]




Hawking-Page v.s. Hagedorn

e AdS-Schwarzschild metric
ds?iﬂ — f(?“)dQT + f_l(r)dzr + r2dQ§_1
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e There is Hawking-Page transition from thermal AdS to AdS-black-hole, which
could be different Hagedorn transition.




BT/ black hole

¢ \We need to superheat to reach Hagedorn regime without collapsing into a
black hole, i.e.

Trap ~ 1/lags, Ts ~ 1/1,
e The nature of string/black hole transition is not clear in AdS space.

k= (Laas/ls)*

e For d=2 case, it is called BTZ black hole. In this case, there is no "small black
hole” phase.

e The asymptotic torus of thermal AdS(3) and BTZ are related by the SL(2,R)
transformation. The BTZ black hole is topological in nature.




AdS(3) Strings

e String theory on AdS(3) is exactly solvable. This is not the case for higher
dimensional AdS space.

e The spectrum is the unitary representations of the SL(2,R) (isometry of AdS(3))
algebra




Maldacena-Ooguri-Son

e The AdS(3) thermal string partition function is
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¢ \We have assumed the internal space to be trivial, and the central charges ar
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CSL(2,R) — 3+ m Cint = 20 — CSL(2,R)

e For internal CFT to be unitary, we need




pole structures & saddle-point

¢ The Theta function has complicated pole structure, which makes the saddle
point approximation more subtle than in the flat space.

e These poles are IR divergence, we need to introduce the IR cutoff before doing
saddle-point approximation, i.e.,
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Extract Hagedorn behavior |

¢ \We perform the saddle-point approximation for each sub-strip separately, and
we find that the sub-strip near the T2-axis dominates.

e We perform the saddle-point approximation of 71-integral with fixed 7o, and
find out the dominant saddle-point at 71 = 0. The resulting partition function is
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Extract Hagedorn behavior |l

¢ \We can extract the IR divergence of the AdS volume, and the partition function
becomes
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¢ Near the Hagedorn temperature, we can extract the long string spectrum by
introducing the momentum integration
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Extract Hagedorn behavior i

e Taking the continuum limit for the w-sum, the partition function can be put in a
suggestive form

K3 9
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e The form for flat space Hagedorn string is

d
BFf1ar = —CVine(B — Br)*T (-, (B — Br)mo)

¢ \We see that they have the same form except that d is replaced by 1+cint where
~1” corresponds to the radial direction. Therefore, the Hagedorn
thermodynamics is similar to the flat space one.




Correspondence principle on AdS(3)

e Our Hagedorn temperature in AdS(3) is monotonically decreasing as k grows,
and note that k>ko=2.26>9/4 so that the maximal Hagedorn temperature is

finite about 0.388 |51
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e At the correspondence point
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Strings on BTZ

e By performing the SL(2,Z) duality on the thermal AdS(3) partition function and
swap winding modes associated with the thermal and angular circles, we can
obtain the string partition function on BTZ.
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¢ This implies that the low temperature BTZ black hole (stringy size) is unstable
due to the appearance of the tachyonic angular winding modes since it
diverges as
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e However, zg7z Is pathological since it has wrong Boltzmann weight.




Conclusion

e In this talk, we have discussed the various aspects of the Hagedorn strings,
especially on the implication to the strings/black hole correspondence.

¢ In the AdS(3) case, we have analyzed the string partition function, and the
results illuminate the effect of the stringy effect on the Hagedorn
thermodynamics.

e Some subtleties cannot be captured by the thermal partition function such as
(1) self-interaction (2) strings on BTZ (3) k=3 transition for fermionic AdS(3)
string at which TcBT4=Tags.

¢ Hagedorn strings may have implication at earlier Universe.




