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A puzzle

• If black hole can form at the LHC, then can field theory explain the Bekenstein-
Hawking entropy?

• For field theory, the entropy associated with the high energy states at energy E 
is proportional to log E.

• However, the black hole entropy is proportional to E(d-1)/(d-2).

• Therefore, there is a mis-match in entropy for the process

a + b −→ virtual particles −→ black hole



High Temperature Strings



Peculiarity of string spectrum

• finite set of massless particles, i.e. gauge bosons, graviton

• exponential degeneracy of states at high energy (Hagedorn Spectrum)

• Hagedorn entropy 

• At high energy, the string behavior is very different from particle theory
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Sstring ∼ βsE
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Random Walk of a String

• The above Hagedorn spectrum can be understood as random walk in target 
space since the energy of a string is proportional to the length of random walk:

• in d non-compact dimensions

• all space are compact

ω(ε) ∼ V · 1
ε

· eβsε

W (ε)

ω(ε) ∼ V · eβsε

ε1+d/2

ω(ε) ∼ eβsε

ε



Thermal Partition Function of String

• Counting the physical string states, the thermal partition function of a single 
string is 

• Or using the path integral formulation
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Extract Hagedorn Behaviors

• Using free string gas (obeying Maxwell-Boltzmann statistics) approximation, 
the free energy of string gas is 

• Using the saddle-point approximation

• There exists a Hagedorn critical temperature (                )
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Thermal Winding Scalar

• The Hagedorn phase transition can be understood as the appearance of the 
thermal tachyonic winding mode as T>TH

• Or by the observation 
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Hagedorn Thermodynamics I

• From free energy we can evaluate the other thermodynamic quantities. 
However, the canonical ensemble may break down if it is not equivalent to 
micro-canonical ensemble. For d>2,

• The specific heat from micro-canonical ensemble density of states is negative 
and divergent at Hagedorn temperature, so the Hagedorn thermodynamics is 
not well-defined. 
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Hagedorn Thermodynamics II

• If all the space are compact, the micro-canonical and canonical ensembles are 
equivalent but the specific heat from micro-canonical ensemble is divergent for 
all temperature, therefore, the Hagedorn temperature is limiting.

S = log Ω = βHE , CV = −β2(
∂β

∂E
)−1
V =∞



Hagedorn Thermodynamics III

• We can regularize the Hagedorn thermodynamics by compactifying the large 
spatial dimensions, this introduce the sub-leading singularities in partition 
function, 



• In Brandenberger et al, they proposed a model using Hagedorn thermal 
fluctuation to produce CMB spectrum

Hagedorn Cosmology

However, the power spectrum is not scale-invariant!



String/Black Hole Correspondence



Bekenstein-Hawking v.s. Hagedorn

• The Bekenstein-Hawking entropy for AdSd+1-charged Schwarzschild black hole 
(d>2)

• BTZ

• Hagedorn entropy
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Horowitz-Polchinski

• It suggests that there is a correspondence between Hagedorn strings and 
black hole when  

• This leads Horowitz and Polchinski (first by Susskind) to conjecture that a black 
hole will turn into a single string when the size of the horizon is of order of 
string length, e.g. d=3 (true for other d’s)
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Hagedorn long string 

• At the correspondence point, the black hole temperature is of order of string 
scale, so the strings are in the Hagedorn regime.  However, as in the earlier 
discussions we see that the long string configurations dominate at Hagedorn 
regime. This is also consistent with the random walk picture, i.e. diffusion of a 
thermal scalar.

• At zero string coupling, the typical size of a Hagedorn string (diffusion length)

! ∼ N1/4ls



Self interaction

• If we start with a long string, we may expect the string to condense into a 
black hole. However, this is not the case if the string coupling is weak as 
required by the Hoop conjecture.

• It is interesting to see if there is a critical string coupling so that the long string 
will collapse by self interaction and turn into a black hole as the size of the 
string ball is of order of the Schwarzschild radius. 

• The correspondence principle implies 

•  However, some preliminary study for a thermal scalar coupled to gravity yields

α′

G
∼
√

N, G ∼ g2α′ gc ∼ N−1/4

g0 ∼ N (d−6)/8 ! ∼ ls
g2N1/2 (d=3)



Hagedorn strings on AdS
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Hawking-Page v.s. Hagedorn

ds2
d+1 = f(r)d2τ + f−1(r)d2r + r2dΩ2

d−1

f(r) = 1 + r2/l2AdS − wd+1M/rd−2, wd+1 = 16πGd+1/(d− 1)Ωd−1

• AdS-Schwarzschild metric

• There is Hawking-Page transition from thermal AdS to AdS-black-hole, which 
could be different Hagedorn transition. 



BTZ black hole

• We need to superheat to reach Hagedorn regime without collapsing into a 
black hole, i.e.

• The nature of string/black hole transition is not clear in AdS space. 

• For d=2 case, it is called BTZ black hole. In this case, there is no ``small black 
hole” phase. 

• The asymptotic torus of thermal AdS(3) and BTZ are related by the SL(2,R) 
transformation. The BTZ black hole is topological in nature.

THP ∼ 1/lAdS, Ts ∼ 1/ls



AdS(3) Strings

• String theory on AdS(3) is exactly solvable. This is not the case for higher 
dimensional AdS space.

• The spectrum is the unitary representations of the SL(2,R) (isometry of AdS(3)) 
algebra

short strings (discrete) long strings (continuous)



Maldacena-Ooguri-Son

• The AdS(3) thermal string partition function is 

• We have assumed the internal space to be trivial, and the central charges ar

• For internal CFT to be unitary, we need 
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pole structures & saddle-point

• The Theta function has complicated pole structure, which makes the saddle 
point approximation more subtle than in the flat space. 

• These poles are IR divergence, we need to introduce the IR cutoff before doing 
saddle-point approximation, i.e., 

∫ ∞

0
dτ2 · · · = lim

ε→0

∞∑
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∫ β
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√

k
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Extract Hagedorn behavior I

• We perform the saddle-point approximation for each sub-strip separately, and 
we find that the sub-strip near the     -axis dominates. 

•   We perform the saddle-point approximation of     -integral with fixed    , and 
find out the dominant saddle-point at            . The resulting partition function is

τ2

τ1 τ2
τ1 = 0



Extract Hagedorn behavior II

• We can extract the IR divergence of the AdS volume, and the partition function 
becomes 

• Near the Hagedorn temperature, we can extract the long string spectrum by 
introducing the momentum integration



Extract Hagedorn behavior III

• Taking the continuum limit for the w-sum, the partition function can be put in a 
suggestive form 

• The form for flat space Hagedorn string is

• We see that they have the same form except that d is replaced by 1+cint where 
``1” corresponds to the radial direction. Therefore, the Hagedorn 
thermodynamics is similar to the flat space one. 



Correspondence principle on AdS(3)

• Our Hagedorn temperature in AdS(3) is monotonically decreasing as k grows, 
and note that k>k0=2.26>9/4 so that the maximal Hagedorn temperature is 
finite about 0.388 ls-1

• At the correspondence point 

βAdS = βBH :=
2πl2AdS

r+
it yields

Large black hole condenses at flat space limit.
Unitarity cutoff the black size to string scale.



Strings on BTZ

• By performing the SL(2,Z) duality on the thermal AdS(3) partition function and 
swap winding modes associated  with the thermal and angular circles, we can 
obtain the string partition function on BTZ. 

• This implies that the low temperature BTZ black hole (stringy size) is unstable 
due to the appearance of the tachyonic angular winding modes since it 
diverges as 

• However, zBTZ is pathological since it has wrong Boltzmann weight.



Conclusion

• In this talk, we have discussed the various aspects of the Hagedorn strings, 
especially on the implication to the strings/black hole correspondence.

• In the AdS(3) case, we have analyzed the string partition function, and the 
results illuminate the effect of the stringy effect on the Hagedorn 
thermodynamics.

• Some subtleties cannot be captured by the thermal partition function such as 
(1) self-interaction (2) strings on BTZ (3) k=3 transition for fermionic AdS(3) 
string at which TcBTZ=TAdS.

• Hagedorn strings may have implication at earlier Universe. 


