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Introduction
e Stueckelberg Lagrangian (1938)
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e Massive QED. Unitarity and renormalizability are manifest!



e Stueckelberg mechanism only works for abelian group!

e However, Stueckelberg shows up in compactification and string

theory.
e Stueckelberg extension of SM [Kors and Nath (2004)
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e 75 is the matter (both visible and hidden sectors in general)

current that couples to the hidden gauge field C,,. More later.



o After EW symmetry breaking by the Higgs mechanism (®) = v/v/2
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e Diagonalize the mass matrix

[ G )

By,

\ Wi

=0

[ 7, )

Z :

4,

/ M7 My Mo 0 \
MM, M5+ ig%vQ — 3929y V°
\ 0 —ipg?  igd? )

O M? O = diag(mz,, m3,



e The m%, and m% are given by
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e The orthogonal matrix O is parameterized as
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where s, = sin ¢, ¢y = cos ¢ and similarly for the angles ¢ and 6.



e The angles are related to the parameters in the Lagrangian Lgism

by
M
5Etangb:—2 : tanHZQYCOSgb,
My g2
tany = tan 6 tan ¢ ms;
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where my = gov/2.
e The Stueckelberg Z’ decouples from the SM when ¢ — 0, since
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where 0, is the Weinberg angle.



Matter current Jx:

o If SM fermion carries X charge, one can has

Qu=2 -2 tangOx(w), Qu=—— % taneQx(d)
gy gy
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However, Qneutron = 0 implies @), + 2()4 = 0 to high precision.

Q) x (SM particle) =0 — j)S(M — 0
But, for the hiddden sector, one can has

Q x (hidden particle) # 0 = Jhiddensector



e Mixing effects in neutral current of SM fermions )
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e Constraints on StSM.
'Feldman, Liu, and Nath, PRL 97, 021801 (2006)]

e 7 mass shift requires (myz/M; < 1)

6] < 0.061+/1 — (my/M;)?
e Drell-Yan data of Stueckelberg 2’

my > 250 GeV  for 0 ~0.035,
myz > 375 GeV  for 0~ 0.06.

e /' width is narrow, since Z' — SM fermions are suppressed by

mixing angles!



[Feldman, Liu, and Nath, PRL 97, 021801 (2006)]
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FIG. 1 (color online). Z’ signal in StSM using the CDF [1] and
DO [2] data. The data put a lower limit of about 250 GeV on M,
for € = 0.035 and 375 GeV for € = 0.06.



Hidden Fermions

e Add a pair of Dirac fermion x and x in the hidden sector. Then

I~ = x7"Qxx
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e /' couples to y is not suppressed. Its width needs not to be narrow.
Drell-Yan constraint may be relaxed, if Z/ — yy is kinematic allowed.

e Photon couples to x can be milli-charged! (eX < e)

e Y is stable! In general, all hidden fermions are stable w.r.t. U(1)x.
[Feinberg, Kabir, and Weinberg, PRL 3, 527 (1957)]




Collider Phenomenology

e /' — invisible xx mode is dominant.

branching ratio
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e LEPII constraint (eTe™ — Z'v — v + missing energy).
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e CDF Drell-Yan constraint (pp — Z' — ete™)
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e LHC prediction: pp — Z’+ monojet
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e ILC prediction: ete™ — Z/ 4+~
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Astrophysical Implication

e \ as milli-charged dark matter candidate.
'Goldberg and Hall (1986); Holdom (1986)]
e WMAP constraint

Qcpmh? = 0.105 +0.009 (WMAP)

_0.1pb
- (ov)

e Relic density calculation

Q, h° ~ (ov) ~ 0.95 4 0.08 pb

o X — fomfam,vZ', ZZ" are considered.

e Thermal average in ov is ignored and v? ~ 0.1 is used.
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¢ WMAP constraint = gx ~ g2 and 6 = tan¢ = My /M7 ~ 0(10_2)



e Indirect detection of y

e Monochromatic line from yx — ~v,vZ,~vZ" could be “smoking

gun” signal of dark matter annihilation at Galaxy center.

e Photon flux

AN, 1TeV\“_
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with the quantity J(v) defined by
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e J(7)) depends on the halo profile p of the dark matter




e TeV gamma-rays from Sgr A* (hypothetical super-massive black
hole) near the Galactic center had been observed recently by

CANGAROO, Whipple, HESS.

e These may play the role of continuum background for dark matter

detection. Detectability of photon line above continuum background
at GLAST and HESS |[Zaharijas and Hooper, PRD 73 (2006) 103501]

Photon flux > 1.9 x (TeV/m,)* x (107'* = 107") cm ™% s
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Fic. 1.—Broadband spectral energy distribution (SED) of Sgr A*. Radio
data are from Zylka et al. (1995), and the IR data for quiescent state and for
flare are from Genzel et al. (2003). X-ray fluxes measured by Chandra in the
quiescent state and during a flare are from Baganoff et al. (2001, 2003). XMM-
Newton measurements of the X-ray flux in a flaring state is from Porquet et al.
(2003). In the same plot we also show the recent INTEGRAL detection of a
hard X-ray flux; however, because of relatively poor angular resolution, the
relevance of this flux to Sgr A* hard X-ray emission (B¢langer et al. 2004)
i1s not yet established. The same is true also for the EGRET data (Mayer-
Hasselwander et al. 1998), which do not allow localization of the GeV source
with accuracy better than 1°. The very high energy gamma-ray fluxes are ob-
tained by the CANGAROO (Tsuchiya et al. 2004), Whipple (Kosack et al.
2004), and HESS (Aharonian et al. 2004) groups. Note that the GeV and TeV
gamma-ray fluxes reported from the direction of the Galactic center may orig-
inate in sources different from Sgr A*; therefore, strictly speaking, they should
be considered as upper limits of radiation from Sgr A*. [See the electronic
edition of the Journal for a color version of this figure.]

Aharonian and Neronov, Astrophys. Journal 619, 306 (2005)



Gamma Ray Fluxes from xx - YY,YZ,YZ’
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Conclusions

e Stueckelberg Z’ extension of SM is interesting.

Phenomenology of Stueckelberg Z’ is different from traditional
Z'. Mass limits can be much lower.

Hidden fermion carries milli-charge.
Hidden fermion is viable dark matter candidate.

New invisible decay mode of Z’ — xx other than neutrinos has
ogreat impact on phenomenology.

Hidden fermion annihilation at Galactic center can give rise
“smoking gun” signal of monochromatic line that can be probed
by next generation of gamma-ray exps. However, it faces big
challenge from astrophysical background, e.g. gamma-ray from
Sgr A*. Perhaps continuum spectrum from secondary photons
due to processes like yx¥ — fom fom, WTW . ... are important!



