Lecture on
Cosmology

Je-An Gu (顧哲安)
National Center for Theoretical Sciences (NCTS)

2007/03/30 @ NTHU
CONTENTS

- Modern Cosmology
- History of 20th-Century Cosmology
- Basic Questions about Expansion
- Summary
What is Cosmology?

- Evolution
 - Static?
 - Expansion?

- Structures
 - "ONE" Galaxy?
 - "\(\infty\)" Galaxies?

- Compositions

(One hundred years ago,)
Modern Cosmology

- 顧哲安 物理雙月刊2005年12月
 “宇宙學十大不可思議”
Thermal History of the Universe

Expansion

Decoupling

Reheating

Inflation

Structure Formation

Expansion

95% !

Accelerating!

Dark Energy?

Dark Matter?
Wrong:
The big bang was like a bomb going off at a certain location in previously empty space.

Right: It was an explosion of space itself.
Inflation (暴胀) : reset !?

- size \uparrow 10^{26} times (e^{60} times) in an exponential way
- driven by vacuum energy
- $\rho \downarrow_0$ (归零) (for particle number, energy, entropy, …)

BUT
After inflation,
- how can structures be generated?
- how can matter be generated?
Inflation (暴脹) → seeds of structures!!

generating initial perturbations (for physical quantities)

(инtrinsic) quantum fluctuations

inflation

classical fluctuations

Initial perturbations
(i.e. seeds of structures)

Forming structures later

Fine tuning: $(\delta \rho/\rho)_{early} \sim 10^{-5}$?)
Inflation (暴脹) → homogenous, isotropic, flat

- LSS & CMB → homog. & isotropic: similar ρ, T
 - Local region in equilibrium: OK
 - Non-causal regions: unnatural?

- CMB → flat (spatially) (not small curvature)
 - but $\frac{\rho_{\text{curvature}}}{\rho_{\text{matter}}} << 1$

- inflation
 - causal ← non-causal

Matter curves space-time.
Most of the effects of matter is to curve “time”
(i.e. metric changing with time) (very little for “space”).

\[\begin{align*}
\frac{\rho_{\text{curvature}}}{\rho_{\text{matter}}} & \uparrow & \text{for decelerated expansion} \\
\downarrow_0 & \text{for accelerated expansion} & \text{inflation}
\end{align*} \]
Reheating (after inflation ended)

vacuum energy \rightarrow matter / particles

\Rightarrow **High-temperature Oven**

(cooking matter, e.g., p, n, e$^-$, γ, ν)

thermal equilibrium \longleftrightarrow particle abundance

Standard Model of particle physics
\oplus ρ_{CMB} or n_{CMB}

❓ **Inflation then Reheating !! How ?**
Decoupling (退耦)

expansion \Rightarrow $\rho \downarrow$ $T \downarrow$ $f_{\text{collision}} \downarrow$

- $f > H$
 - $T > T_{\text{de}}$
 - $t < t_{\text{de}}$

- $f < H$
 - $T < T_{\text{de}}$
 - $t > t_{\text{de}}$

\(T_{\text{de}} \approx 3000 \text{ K} \)
\(t_{\text{de}} \approx 380,000 \text{ years old} \)

\Rightarrow relic photons: Cosmic Microwave Background (CMB)
Decoupling (退耦)

expansion ⇒ ρ \downarrow \ T \downarrow \ f_{\text{collision}} \downarrow

\begin{align*}
\text{decoupling} & \quad f > H \\
T > T_{\text{de}} & \quad t < t_{\text{de}} \\
T < T_{\text{de}} & \quad t > t_{\text{de}} \\
\text{decoupling} & \quad f < H
\end{align*}

\begin{align*}
(\frac{n_e}{n_\gamma}) & \quad T < 2m_e : \\
e^- + e^+ & \quad \longleftrightarrow \quad 2\gamma \\
\text{(cf. 10}^{-10} \text{ in reality)}
\end{align*}

\begin{align*}
(\frac{n_p}{n_\gamma}) & \quad T < 2m_p : \\
p + \bar{p} & \quad \longleftrightarrow \quad 2\gamma
\end{align*}

\begin{align*}
\text{until } T < T_{\text{de}} \sim 22 \text{ MeV} \quad \text{(then } N_p \sim \text{ const.)} & \Rightarrow \frac{n_p\bar{p}}{n_\gamma} \sim 10^{-19} \\
& \quad (\text{cf. } 10^{-10} \text{ in reality})
\end{align*}
Baryon Asymmetry (重子不對稱)

Reality: \(n_p >> n_{\bar{p}} \) \(n_p / n_\gamma \sim 10^{-10} \) now

\[p + \bar{p} \overset{(n_p \sim n_\gamma)}{\rightarrow} 2\gamma \quad T < 2m_p: \quad p + \bar{p} \not\rightarrow 2\gamma \]

If \(n_p = n_{\bar{p}} \) initially,

\[N_p \downarrow \quad \text{until } T < T_{de} \sim 22 \text{ MeV} \quad (\text{then } N_p \sim \text{const.}) \Rightarrow \frac{n_p \bar{p}}{n_\gamma} \sim 10^{-19} \]

So, initially, \(\frac{n_p - n_{\bar{p}}}{n_p} \sim 10^{-8} \) \(\leq \) Baryon Asymmetry

？？？（initial condition? other mechanism?）
Structure Formation vs. Thermo. 2nd Law

entropy density

Expansion \Rightarrow $s \downarrow$ even if $s \uparrow$

total entropy
Dark Matter: helping structure formation

- Structure formation: $\frac{\delta \rho}{\rho}$ (gravitational instability)

- Visible matter: interaction with $\gamma \Rightarrow (\frac{\delta \rho}{\rho})_{\text{visible}}$ after decoupling, $(\frac{\delta \rho}{\rho})_{\text{visible}}$ is not created.

- Invisible matter: $(\frac{\delta \rho}{\rho})_{\text{invisible}}$ from $t << t_{\text{de}}$ (~380,000 years old)

 - Initially proposed for maintaining structures.
 - 1930 Fritz Zwicky: Coma cluster.
 - Later: galactic rotational curves, gravitational lensing, …

Creating gravitational potential which would trapping baryons.

What is Dark Matter?
Dark Energy (This is a dark age ….)

1998 Supernova Cosmology Project & High-z Supernova Search: discovery of Cosmic Acceleration!!

anti-gravity / repulsive gravity !?!

Dark Energy
e.g. Einstein’s biggest blunder: \(\Lambda \) (cosmological constant)

Other candidates:
- modified gravity
- extra dimension
- inhomogeneity
- ….

What is Dark Energy?
Anti-gravity

repulsive gravity

extra attractive gravity

Dark Energy
73%

Baryon
5%

Extra Gravity
Nonbaryonic
Dark Matter
22%

Dark Energy, Cosmic Acceleration:
Purpose? Effect?
History of 20th-Century Cosmology
One hundred years ago,

Cosmology

- **Evolution**
 - Static?
 - Expansion?

- **Structures**
 - "ONE" Galaxy?

- **Compositions**
 - "∞" Galaxies?

...?
History of 20th-Century Cosmology

1916 Einstein: General Relativity (basic framework for cosmology)
1917 Einstein: cosmology constant (Λ) (for static cosmo. model)
1916 Einstein: General Relativity (basic framework for cosmology)
1917 Einstein: cosmology constant (Λ) (for static cosmo. model)
1924 Hubble: distance of Andromeda Nebula ~ 800,000 lyrs (outside our Milky Way galaxy)
One hundred (− 20) years ago, the concept of cosmology evolved as scientists debated whether the universe was static or expanding. The idea of an infinite number of galaxies also challenged the prevailing notions. Today, we continue to explore the compositions of the universe, questioning the very nature of the "ONE" galaxy.
1916 Einstein: General F
1917 Einstein: cosmology constant (Λ) – biggest blunder
1924 Hubble: distance of Andromeda Nebula ~ 800,000 lyrs (outside our Milky Way galaxy)
1910 Slipher (Lowell Observatory): redshift / blueshift of nebulae
1913 Andromeda: blueshift – 300 km/s
1913 – 1916 22 nebulae: redshift – 1000 km/s
1920s Hubble: measure distance of nebulae
1929 Hubble’s expansion law: $v = Hd$ (H: Hubble constant)
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1916</td>
<td>Einstein: General Relativity (basic framework for cosmology)</td>
</tr>
<tr>
<td>1917</td>
<td>Einstein: cosmology constant (Λ) – biggest blunder</td>
</tr>
<tr>
<td>1910</td>
<td>Slipher (Lowell Observatory): redshift / blueshift of nebulae</td>
</tr>
<tr>
<td></td>
<td>1913</td>
</tr>
<tr>
<td></td>
<td>1913 – 1916</td>
</tr>
<tr>
<td>1924</td>
<td>Hubble: distance of Andromeda Nebula ~ 800,000 lyrs (outside our Milky Way galaxy)</td>
</tr>
<tr>
<td>1920s</td>
<td>Hubble: measure distance of nebulae</td>
</tr>
<tr>
<td>1929</td>
<td>Hubble’s expansion law: $v = H d$ (H: Hubble constant)</td>
</tr>
</tbody>
</table>
1916 Einstein: General Relativity (basic framework for cosmology)
1917 Einstein: cosmology constant (Λ) – biggest blunder

1910 Slipher (Lowell Observatory): redshift / blueshift of nebulae
1913 Andromeda: blueshift – 300 km/s
1913 – 1916 22 nebulae: redshift – 1000 km/s

1924 Hubble: distance of Andromeda Nebula ~ 800,000 lyrs (outside our Milky Way galaxy)

1920s Hubble: measure distance of nebulae
1929 Hubble’s expansion law: $v = H \, d$ (H: Hubble constant)

1927 – 1933 Lemaitre (priest @ Belgium): (prototype of Big Bang)
 “Hypothesis of Primordial Atom” (quantum)
One hundred (−20) years ago,

- **Cosmology**
 - **Evolution**
 - Static ?
 - Expansion ?
 - NOT YET (stay tuned)
 - **Structures**
 - "ONE" Galaxy ?
 - "∞" Galaxies ?
 - **Compositions**
 - ?

"ONE" Galaxy ?
"∞" Galaxies ?
NOT YET (stay tuned)
(Hot) Big Bang

Gamow

Static Universe

Hoyle

Weakness: Singularity
Beginning? Before Big Bang?
Physics of early universe?

(1950: create the name “Big Bang”)

1948 Hoyle; Bondi & Gold:
Model of static universe
One hundred (− 20) years ago,

Cosmology

- **Evolution**
 - Static ?
 - Expansion ?
- **Structures**
 - "ONE" Galaxy ?
 - "∞" Galaxies ?
- **Compositions**

Issue

Origin and Abundance of Elements

Not yet (stay tuned)
Issue Origin and Abundance of Elements

1930s Bethe & others: Sun heated by nuclear fusion

1938 Weizsacher: Stars NOT hot enough to cook up elements
 There must be a very-high-temperature “fire ball”.

1940s Gamow, Alpher, Herman:
 model of cooking elements based on Big Bang
 (Alpher, Bethe and Gamow, Physical Review)

1940s Alpher & Gamow: temperature of Universe ~ 5K (CMB)
 (Unfortunately, there was NO technique of detecting CMB.)
 (forgotten)
<table>
<thead>
<tr>
<th>(Hot) Big Bang</th>
<th>Static Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Universe</td>
<td>∞</td>
</tr>
<tr>
<td>1.8×10^9 years (too small)</td>
<td></td>
</tr>
<tr>
<td>$\rightarrow 1 \sim 2 \times 10^{10}$ years (Baade)</td>
<td></td>
</tr>
<tr>
<td>Abundance of Elements</td>
<td>(made by stars)</td>
</tr>
<tr>
<td>H: $\frac{3}{4}$, He: $\frac{1}{4}$ (heavier < 1%)</td>
<td>(nonuniform distribution)</td>
</tr>
<tr>
<td>Uniform distribution</td>
<td></td>
</tr>
<tr>
<td>Matter Distribution</td>
<td>constant in time</td>
</tr>
<tr>
<td>The earlier, the denser.</td>
<td></td>
</tr>
<tr>
<td>Temperature of Universe</td>
<td>(NA)</td>
</tr>
<tr>
<td>$\sim 5K$</td>
<td></td>
</tr>
<tr>
<td>(1960s 3.5K)</td>
<td></td>
</tr>
<tr>
<td>(1990s 2.73K)</td>
<td></td>
</tr>
</tbody>
</table>

The profile of the present universe: not good enough.
How about the look/photo of the early universe?
1950s Ryle: radio nebulae – the further, the denser

1960s (early) quasars (high redshift, even up to 3 or 4)
-- indicating high-energy environment in the earlier time

Before mid-1960s Static Universe: dying

1964 Arno Penzias and Robert Wilson: CMB – mercy stroke
3.5 K “noise” / microwave background (wavelength: 7.35 cm)
isotropy ; black body radiation
Winning of Big Bang

Discovery of Cosmic Background

AT&T Bell

(noise from “white insulator” ?)

Microwave Receiver

Robert Wilson

Arno Penzias

(http://map.gsfc.nasa.gov)
1964 Arno Penzias and Robert Wilson: CMB – mercy stroke
3.5 K “noise” / microwave background (wavelength: 7.35 cm)
isotropy ; black body radiation

The New York Times May 21, 1965, Friday

Signals Imply a 'Big Bang' Universe

By WALTER SULLIVAN
Scientists at the Bell Telephone Laboratories have observed what a
group at Princeton University believes may be remnants of an
explosion that gave birth to the universe.
One hundred (−60) years ago,

Cosmology

- Evolution
- Structures
- Compositions

- □ Static ?
- □ "ONE" Galaxy ?
- □ "∞" Galaxies ?
- ✔ Expansion ?
- ✔ "∞" Galaxies ?

1964 Penzias & Wilson
Existence of CMB — relic photons along with expansion

1964 Penzias & Wilson
Existence of CMB — relic photons along with expansion
CMB: so isotropic! (⇔ homogeneous density)

(issue)

How did structures form?
Where did structures come?

(solution) Looking for $\delta T/T$ ($\leftarrow \delta \rho/\rho$)
Issue Primeval density fluctuation $\delta \rho / \rho$

\Rightarrow Temperature fluctuation $\delta T / T$ in CMB

1960s (late) $\delta T / T \sim 1/10$? (If yes, easy to find.)

1980s Balloon exp’t, U-2 exp’t (e.g. Smoot): no $\delta T / T$ found

Sensitivity of $\delta T / T : 10^{-4}$

Baryon dominated: $\delta T / T \sim 10^{-4}$
Dark Matter dominated: $\delta T / T$ down to $<10^{-5}$

1980s regarding the origin of the density fluctuations (seeds) models: Inflation vs. Topological Defect
History of 20th-Century Cosmology

Before COBE (1965-1990)

David Wilkinson @ Princeton
George Smoot @ Berkeley

In Proceedings of the Workshop on Particle Astrophysics: Forefront Experimental Issues, December 1988, Berkeley, California
History of 20th-Century Cosmology

Baryon dominated: $\delta T/T \sim 10^{-4}$
Dark Matter dominated: $\delta T/T$ down to $<10^{-5}$

1989/11/18 COBE launched (sensitivity: $\delta T/T < 10^{-5}$)

1990 Jan. 1st Announcement (no $\delta T/T$ discovered)
FIRAS (Mather): black body nature
DMR (Smoot): dipole

<1992 no $\delta T/T$ discovery announced (down to 10^{-5})
(disappointment)
(crisis of Big Bang?)

1992/4/23 (Wed.) Announcement: $\delta T/T$ discovered (l=1~20)

Supporting Big Bang!!
2006
John Mather
George Smoot

1978
Arno Penzias
Robert Wilson

Cosmology: Experimental Science
Winning of Big Bang model

1992
NASA

1965
AT&T Bell

“泛黄”宇宙太古照片 (CMB Milestones)
(edited by Prof. Ng)
The Nobel Prize in Physics 2006

"for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation"

John C. Mather

1/2 of the prize

USA

NASA Goddard Space Flight Center
Greenbelt, MD, USA

b. 1946

George F. Smoot

1/2 of the prize

USA

University of California
Berkeley, CA, USA

b. 1945

Titles, data and places given above refer to the time of the award.
Diffuse InfraRed Background Experiment (DIRBE)

Launched on Nov 18, 1989 (Cosmic Background Explorer)

Far InfraRed Absolute Spectrophotometer (FIRAS)

Differential Microwave Radiometer (DMR)

(edited by Prof. Ng)
Fig. 6. The first FIRAS result (Mather et al. 1990). Data had been accumulated during nine minutes in the direction of the northern galactic pole. The small squares show measurements with a conservative error estimate of 1%. The unit along the vertical axis is erg (cm s sr)$^{-1}$. The relation to SI units is 1 MJy sr$^{-1} = 2.9979 \times 10^{-7}$ erg (cm s sr)$^{-1}$. The full line is a fit to the blackbody form.
Fig. **DMR results** (Smoot et al. 1992, http://lambda.gsfc.nasa.gov/product/cobe/) in galactic coordinates (horizontally longitude from +180° to -180°, vertically latitude from +90° to -90°, centre approximately on the Milky Way centre. The data from the 53 GHz band (6 mm wavelength) showing the near uniformity of the CMB (top), the dipole (middle) and the quadrupole and higher anisotropies with the dipole subtracted (bottom). The relative sensitivities from top to bottom are 1, 100 and 100,000. The background from the Milky Way, not following a blackbody spectrum (visible as a horizontal red band in the bottom panel), has not been subtracted.
One hundred (−85) years ago,

Cosmology

- **Evolution**
 - Static ?
 - Expansion ?
 - 1990 FIRAS (Mather)
 - Blackbody of CMB — relic photons from
 - Expansion
 - Thermal equilibrium
 - Isolated.

- **Structures**
 - "ONE" Galaxy ?
 - "∞" Galaxies ?
 - 1992 DMR (Smoot)
 - Anisotropy of CMB
 - Origin of structures / Primordial seeds

- **Compositions**
 - / (some info)
One hundred (−85) years ago,

Cosmology

Evolution

Structures

Compositions

Static ?

"ONE" Galaxy ?

 Expansion ?

 "∞" Galaxies ?

(Δρ/ρ)$_{\text{present}}$ → evolution → (Δρ/ρ)$_{\text{decouple}}$ → composition → (ΔT/T)$_{\text{decouple}}$

(some info)
COBE Discovery of $\delta T/T$

1992/04/23 (Wed.) Announcement: $\delta T/T$ discovered ($l=1\sim20$)

Supporting Big Bang !!

Hawking: “the most important discovery”

Smoot in 1992:

Seeing a dust on a skating rink
Seeing the oldest, largest structures
Cosmo-Archeologist

Smoot in “Wrinkles in Time”:

“我們在時間的組織中發現的皺紋是這永恆追尋過程中的一部份，而這個發現也是人類邁入宇宙學黃金年代的重要一步。忽然之間，一幅巨大拼圖的碎片開始合併了，暴脹理論愈形成立，而黑暗物質也呼之欲出了。我們對大爆炸理論的信念又重新點燃了，在漆黑的夜空、元素的組成和宇宙膨脹現象之外，這種萬物創始時留下的餘暈成了另一個我們所知構成今日宇宙之方法。宇宙的創造力就是它最強而有力的力量，他隨著時間創造出星球和星雲之類的結構，到最終，創造了我們。皺紋就是這創造力的核心，它能從一片均勻中創造出結構來。”
NASA WMAP Data & Cosmological Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>+ uncertainty</th>
<th>− uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total density</td>
<td>Ω_m</td>
<td>1.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Equation of state of quintessence</td>
<td>w</td>
<td>-0.78</td>
<td>95% CL</td>
<td>—</td>
</tr>
<tr>
<td>Dark energy density</td>
<td>Ω_{de}</td>
<td>0.73</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Baryon density</td>
<td>$\Omega_b h^2$</td>
<td>0.0224</td>
<td>0.0009</td>
<td>0.0009</td>
</tr>
<tr>
<td>Baryon density</td>
<td>Ω_b</td>
<td>0.0441</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Baryon density (cm$^{-3}$)</td>
<td>n_b</td>
<td>2.5×10^{-7}</td>
<td>0.1 $\times 10^{-7}$</td>
<td>0.1 $\times 10^{-7}$</td>
</tr>
<tr>
<td>Matter density</td>
<td>$\Omega_m h^2$</td>
<td>0.135</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>Matter density</td>
<td>Ω_m</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Light neutrino density</td>
<td>$\Omega_{\nu} h^2$</td>
<td><0.0073</td>
<td>90% CL</td>
<td>—</td>
</tr>
<tr>
<td>CMB temperature (K)a</td>
<td>T_m</td>
<td>2.725</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>CMB photon density (cm$^{-1})^b$</td>
<td>n_γ</td>
<td>410.4</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Baryon-to-photon ratio</td>
<td>η</td>
<td>8.1×10^{-10}</td>
<td>0.3 $\times 10^{-10}$</td>
<td>0.2 $\times 10^{-10}$</td>
</tr>
<tr>
<td>Baryon-to-matter ratio</td>
<td>Ω_b/Ω_m</td>
<td>0.17</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Power spectrum normalization (at $k_0 = 0.05$ Mpc$^{-1})^p$</td>
<td>A</td>
<td>0.833</td>
<td>0.088</td>
<td>0.088</td>
</tr>
<tr>
<td>Power spectrum index (at $k_0 = 0.05$ Mpc$^{-1})^p$</td>
<td>n_g</td>
<td>0.93</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Tensor-to-scalar ratio (at $k_0 = 0.002$ Mpc$^{-1})^p$</td>
<td>σ_8</td>
<td>0.84</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Power spectrum index (at $k_0 = 0.05$ Mpc$^{-1})^p$</td>
<td>σ_8/σ_{*}</td>
<td>0.44</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Power spectrum index (at $k_0 = 0.05$ Mpc$^{-1})^p$</td>
<td>A</td>
<td>0.833</td>
<td>0.088</td>
<td>0.088</td>
</tr>
<tr>
<td>Tensor-to-scalar ratio (at $k_0 = 0.002$ Mpc$^{-1})^p$</td>
<td>r</td>
<td><0.90</td>
<td>90% CL</td>
<td>—</td>
</tr>
<tr>
<td>Redshift of decoupling</td>
<td>z_{dec}</td>
<td>1089</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thickness of decoupling (FWHM)</td>
<td>Δz_{dec}</td>
<td>195</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hubble constant</td>
<td>h</td>
<td>0.71</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Age of universe (Gyr)</td>
<td>t_0</td>
<td>14.7</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Age at decoupling (Gyr)</td>
<td>t_{dec}</td>
<td>379</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Age at recombination (Mry, 95% CL)</td>
<td>t_r</td>
<td>150</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Decoupling time interval (Gyr)</td>
<td>Δt_{dec}</td>
<td>118</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Redshift of matter-energy equality</td>
<td>z_{eq}</td>
<td>3233</td>
<td>194</td>
<td>210</td>
</tr>
<tr>
<td>Redshift of optical depth</td>
<td>τ</td>
<td>0.17</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Redshift of recombination (95% CL)</td>
<td>z_r</td>
<td>20</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Sound horizon at decoupling (c)</td>
<td>d_A</td>
<td>0.908</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Angular size distance to decoupling (Gpc)</td>
<td>d_A</td>
<td>14.0</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Sound horizon at decoupling (Mpc)c</td>
<td>ℓ_A</td>
<td>201</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sound horizon at decoupling (Mpc)c</td>
<td>r_s</td>
<td>147</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Ongoing CMB Experiments

Timbie 02

Interferometer
- AMiBA
- CBI
- DASI
- VSA
- CAPMAP
- Boomerang
- Maxipol
- QUAD

Radiometer
- Bolometer
- Mauna Loa
- Chile
- South Pole
- Princeton
- Tenerife
- New Mexico
- South Pole
- South Pole

Balloon-borne bolometer
- NASA WMAP
 - launched in 6/2001
 - 1st year data 2/2003
 - 3rd year data 3/2006
 - 0.2° l<1000

AMiBA at Mauna Loa
Taiwan, Australia, USA
SPOrt aboard the International Space Station $7^\circ \ 1<20$

Large-format radiometer arrays

Large-format bolometer arrays:
South Pole Telescope
Atacama Cosmology Telescope
Polarbear

ESA Planck 2007 $0.2^\circ \ 1<1000$

NASA Inflation Probe (Beyond Einstein Program)
Winning of Big Bang model

Cosmology: Experimental Science

Cosmology → Precision Cosmology

Plus many other observations

edited by
Prof. K.-W. Ng
Basic Questions about Expansion

Scientific American, March 2005
“Misconceptions about the Big Bang”
-- Lineweaver and Davis
Expansion

Scientific American, March 2005
“Misconceptions about the Big Bang”
-- Lineweaver and Davis

(6 common errors about the expanding universe)

• What kind of explosion was the Big Bang?
• Can galaxies recede faster than light?
• Can we see galaxies receding faster than light?
• Why is there a cosmic redshift?
• How large is the observable universe?
• Do objects inside the universe expand, too?
What kind of explosion was the big bang?

Wrong:
The big bang was like a bomb going off at a certain location in previously empty space.

Right: It was an explosion of space itself.
Wrong: Of course not. Einstein’s special theory of relativity forbids that.

Right:
Sure they can. Special relativity does not apply to recession velocity.
Can we see galaxies receding faster than light?

Wrong: Of course not. Light from those galaxies never reaches us.

Right: Sure we can, because the expansion rate changes over time.

For decelerating expansion, YES.

But,

Accelerating expansion \rightarrow HORIZON ($\ddot{a} > 0$)

We can never see the galaxies outside the HORIZON.
Wrong:
Because receding galaxies are moving through space and exhibit a Doppler shift.
(Doppler effect)

Right:
Because expanding space stretches all light waves as they propagate.
(Gravitational Redshift)
(The energy of particles is transferred to the energy of the gravitational field.)
Do objects inside the universe expand, too?

Wrong: Yes. Expansion causes the universe and everything in it to grow.

Right: No. The universe grows, but coherent objects inside it do not.
How to distinguish expansion & outgoing motion?

• How to distinguish between the expansion of the universe and the outgoing motion of particles (or galaxies)?

• Is it possible to describe the phenomenon of expansion via outgoing motion?
 (In principle, they are different and cannot be equivalent.)
 (e.g. \(v > < c \) ? Horizon ?)

• Phenomenologically, how much can we distinguish them?

• Does “expansion + outgoing motion” make sense?
 (While none of them is dominant over the other.)
 Can the observational data rule out this possibility?

Note momentum \(\sim \frac{1}{a} \)
Summary
Thermal History of the Universe

History of the Universe

Expansion
Decoupling
Reheating
Baryon Asymmetry
Accelerating!
Structure Formation
Dark Matter?

Key:
- W, Z bosons
- photon
- quark
- meson
- gluon
- baryon
- electron
- ion
- muon
- tau
- neutrino
- star
- galaxy
- black hole
- atom
- dark matter
- dark energy

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF
\(\Omega_i \equiv \rho_i / \rho_{\text{CRITICAL}} \)

\(\Omega_{\text{TOTAL}} = 1 \)

Cosmic Pie

- **\(\Lambda CDM \)**
- **Heavy Elements:**
 - \(\Omega = 0.0003 \)
- **Neutrinos (\(\nu \)):**
 - \(\Omega = 0.0047 \)
- **Stars:**
 - \(\Omega = 0.005 \)
- **Free H & He:**
 - \(\Omega = 0.04 \)
- **Cold Dark Matter:**
 - \(\Omega = 0.22 \)
- **Dark Energy (\(\Lambda \)):**
 - \(\Omega = 0.73 \)
The 95% of the energy in our universe is beyond our understanding!!

What we understand contributes only 5%!!
Standard Model of
FUNDAMENTAL PARTICLES AND INTERACTIONS

Part 1: FERMIONS

Leptons |
<table>
<thead>
<tr>
<th>Flavor</th>
<th>Mass GeV/c²</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td><10⁻³⁰</td>
<td>0</td>
</tr>
<tr>
<td>ν_μ</td>
<td><0.0002</td>
<td>0</td>
</tr>
<tr>
<td>ν_τ</td>
<td><0.02</td>
<td>0</td>
</tr>
<tr>
<td>e⁺</td>
<td>0.000511</td>
<td>1</td>
</tr>
<tr>
<td>μ⁺</td>
<td>0.106</td>
<td>1</td>
</tr>
<tr>
<td>τ⁺</td>
<td>1.7771</td>
<td>1</td>
</tr>
</tbody>
</table>

Quarks |
<table>
<thead>
<tr>
<th>Flavor</th>
<th>Approx. Mass GeV/c²</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>0.003</td>
<td>2/3</td>
</tr>
<tr>
<td>d</td>
<td>0.006</td>
<td>-1/3</td>
</tr>
<tr>
<td>c</td>
<td>1.3</td>
<td>2/3</td>
</tr>
<tr>
<td>s</td>
<td>0.1</td>
<td>-1/3</td>
</tr>
<tr>
<td>t</td>
<td>175</td>
<td>2/3</td>
</tr>
<tr>
<td>b</td>
<td>4.3</td>
<td>-1/3</td>
</tr>
</tbody>
</table>

Properties of the Interactions

Gravitational |
- Acts on: Particles experiencing: Mass-Energy
- Particles mediating: Graviton (massless, massless)
- Strength relative to electromagnetic: 10⁻³⁶ m⁻¹

Weak |
- Acts on: All quarks, leptons
- Particles mediating: W⁺, W⁻, Z⁰
- Flavor: 0.8
- Electric Charge: 1

Electromagnetic |
- Acts on: All leptons, quarks
- Particles mediating: Photon (massless, massless)
- Strength relative to electromagnetic: 10⁻²² m⁻¹

Strong |
- Acts on: Quarks, Gluons
- Particles mediating: Gluons (massless, massless)
- Strength relative to electromagnetic: 10⁻¹⁰ m⁻¹

Bosons

Unified Electroweak |
<table>
<thead>
<tr>
<th>Name</th>
<th>Mass GeV/c²</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z⁰</td>
<td>91.187</td>
<td>0</td>
</tr>
</tbody>
</table>

Strong (color) |
<table>
<thead>
<tr>
<th>Name</th>
<th>Mass GeV/c²</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Residual Strong Interaction

Properties of the Interactions

Fermions |
- Matter and antimatter |
- Every particle type has a corresponding antiparticle type.

Baryons |
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Charge</th>
<th>Mass</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>proton</td>
<td>1</td>
<td>938</td>
<td>1/2</td>
</tr>
<tr>
<td>n</td>
<td>neutron</td>
<td>0</td>
<td>940</td>
<td>1/2</td>
</tr>
<tr>
<td>Λ</td>
<td>lambda</td>
<td>1</td>
<td>1116</td>
<td>1/2</td>
</tr>
<tr>
<td>Ω⁻</td>
<td>omega bar</td>
<td>-1</td>
<td>1672</td>
<td>3/2</td>
</tr>
</tbody>
</table>

Antibaryons |
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Charge</th>
<th>Mass</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>¯p</td>
<td>antiproton</td>
<td>-1</td>
<td>938</td>
<td>1/2</td>
</tr>
<tr>
<td>¯n</td>
<td>antineutron</td>
<td>0</td>
<td>940</td>
<td>1/2</td>
</tr>
<tr>
<td>¯Λ</td>
<td>antibarriomen</td>
<td>-1</td>
<td>1116</td>
<td>1/2</td>
</tr>
<tr>
<td>¯Ω⁻</td>
<td>antomega</td>
<td>1</td>
<td>1672</td>
<td>3/2</td>
</tr>
</tbody>
</table>

Mesons |
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Charge</th>
<th>Mass</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>p⁺</td>
<td>pion plus</td>
<td>+1</td>
<td>247</td>
<td>0</td>
</tr>
<tr>
<td>K⁺</td>
<td>kaon plus</td>
<td>+1</td>
<td>493</td>
<td>0</td>
</tr>
<tr>
<td>η⁺</td>
<td>eta plus</td>
<td>+1</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>η₀</td>
<td>eta zero</td>
<td>0</td>
<td>527</td>
<td>0</td>
</tr>
<tr>
<td>η⁻</td>
<td>eta minus</td>
<td>-1</td>
<td>208</td>
<td>0</td>
</tr>
</tbody>
</table>

The Particle Adventure
Visit: Visit the Particle Adventure at: http://ParticleAdventure.org

©2000 Contemporary Physics Education Project. CPEP is a non-profit organization supported by the National Science Foundation, The National Academy of Sciences, The National Academy of Engineering, The National Research Council, The U.S. Department of Energy, and the Office of Science and Technology Policy. This book is available for free under a Creative Commons Attribution-NonCommercial-ShareAlike License. For information on copyrights, permissions, and resources, visit CPEP web site at: http://CPEPweb.org
Great Achievement!!

BUT
Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

Fermions

<table>
<thead>
<tr>
<th>Lepton</th>
<th>Mass (GeV/c²)</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron</td>
<td>0.000511</td>
<td>0</td>
</tr>
<tr>
<td>μ electron</td>
<td><0.0002</td>
<td>0</td>
</tr>
<tr>
<td>τ electron</td>
<td>1.7771</td>
<td>-1</td>
</tr>
</tbody>
</table>

Quark

<table>
<thead>
<tr>
<th>Quark</th>
<th>Mass (GeV/c²)</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>0.003</td>
<td>2/3</td>
</tr>
<tr>
<td>d</td>
<td>0.006</td>
<td>-1/3</td>
</tr>
<tr>
<td>c</td>
<td>1.3</td>
<td>2/3</td>
</tr>
<tr>
<td>s</td>
<td>0.1</td>
<td>-1/3</td>
</tr>
<tr>
<td>t</td>
<td>175</td>
<td>2/3</td>
</tr>
<tr>
<td>b</td>
<td>4.3</td>
<td>-1/3</td>
</tr>
</tbody>
</table>

Bosons

<table>
<thead>
<tr>
<th>Boson</th>
<th>Mass (GeV/c²)</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W⁺</td>
<td>80.4</td>
<td>+1</td>
</tr>
<tr>
<td>W⁻</td>
<td>80.4</td>
<td>-1</td>
</tr>
<tr>
<td>Z⁰</td>
<td>91.187</td>
<td>0</td>
</tr>
</tbody>
</table>

Structure within the Atom

- **Nucleus** (Size = 10⁻¹⁵ m)
- **Electron** (Size = 10⁻¹⁸ m)

Properties of the Interaction

<table>
<thead>
<tr>
<th>Force</th>
<th>Short Range</th>
<th>Long Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>γ, Z⁰</td>
<td>Gluon</td>
</tr>
<tr>
<td>Strong</td>
<td>Quarks, Gluons</td>
<td>Hadrons</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>Quarks</td>
<td>Photons</td>
</tr>
</tbody>
</table>

Quarks Confined in Mesons and Baryons

Mesons and baryons are composite particles consisting of quarks. There are 6 quark flavors and 6 antiquark flavors, allowing for the formation of mesons and baryons.

Matter and Antimatter

Matter and antimatter are defined by their antiparticle type, denoted by a bar over the particle symbol (e.g., \bar{e}). The charge is opposite in sign. Quarks and antiquarks have identical mass but opposite charges.

Figures

- `n→p+e⁻+ν_e`
- `e⁻+p→B^0+\bar{B}^0`
- `p+p→Z⁰+assorted hadrons`
- `γ or Z→hadrons`

This document is a summary of the current knowledge in Particle Physics. It includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is not included in this list because it is one of the fundamental interactions even though part of the "Standard Model."
Known? Unknown!
5% 95%

知之為知之，不知為不知，是知也。

— 論語為政篇
— By Confucius

(Analects of Confucius)
Known? Unknown!

Great Puzzles

New Revolution!!