Useful formulas
\[\nabla V = \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\phi} \quad \text{and} \quad \nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 V_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (r \sin \theta V_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} V_{\phi} \]

1. \((8\%, 12\%) \) \(\mathbf{v} = r^2 \cos \theta \hat{r} + r^2 \cos \phi \hat{\theta} - r^2 \cos \theta \sin \phi \hat{\phi} \)

(a) Compute \(\nabla \cdot \mathbf{v} \).

(b) Check the divergence theorem using the volume shown in the figure (one octant of the sphere of radius \(R \)).

[Hint: Make sure you include the entire surface.]

2. \((10\%, 10\%) \) Suppose the potential at the surface of a hollow hemisphere is specified, as shown in the figure, where \(V_1(a, \theta) = 0 \), \(V_2(b, \theta) = V_0(2 \cos \theta - 5 \cos \theta \sin^2 \theta) \), \(V_3(r, \pi/2) = 0 \). \(V_0 \) is a constant.

(a) Show the general solution in the region \(b \leq r \leq a \) and determine the potential in the region \(b \leq r \leq a \), using the boundary conditions.

(b) When \(V_2(b, \theta) = V_0 \sin \theta \) and \(V_1(a, \theta) = V_3(r, \pi/2) = 0 \), how do you solve this problem? Please explain as detailed as possible.

[Hint: \(P_0(x) = 1 \), \(P_1(x) = x \), \(P_2(x) = (3x^2 - 1)/2 \), and \(P_3(x) = (5x^3 - 3x)/2 \).]
3. (7%, 7%, 6%) The potential of some configuration is given by the expression \(V(\mathbf{r}) = A e^{-\lambda r} / r \), where \(A \) and \(\lambda \) are constants.
 (a) Find the energy density (energy per unit volume).
 (b) Find the charge density \(\rho(\mathbf{r}) \).
 (c) Find the total charge \(Q \) (do it two different ways) and verify the divergence theorem.

4. (7%, 7%, 6%) A uniform line charge \(\lambda \) is placed on an infinite straight wire, a distance \(d \) above a grounded conducting plane.
 (a) Find the potential \(V \) in the region above the plane.
 (b) Find the surface charge density \(\sigma \) induced on the conducting plane.
 (c) Find the force on the wire per unit length.
 [Hint: Use the method of images.]

5. (8%, 6%, 6%) Consider a hollowed charged sphere with radius \(R \) and uniform charge density \(\rho \) as shown in the figure. The inner radius of the spherical cavity is \(R/2 \).
 (a) If the observer is very far from the charged sphere, find the multiple expansion of the potential \(V \) in power of \(1/r \)
 (b) Find the dipole moment \(\mathbf{p} \).
 (c) Find the electric field \(\mathbf{E} \) up to the dipole term.
 [Note: Specify a vector with both magnitude and direction.]
1.
(a)
\[\mathbf{v} = r^2 \cos \theta \mathbf{\hat{r}} + r^2 \cos \phi \mathbf{\hat{\phi}} - r^2 \cos \theta \sin \phi \mathbf{\hat{\theta}} \]

\[\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} v_{\phi} \]

\[= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \cos \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta r^2 \cos \phi) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (-r^2 \cos \theta \sin \phi) \]

\[= 4r \cos \theta + r \frac{\partial}{\partial \phi} (-r^2 \cos \theta \sin \phi) - r \frac{\partial}{\partial \phi} \cos \phi \]

\[= 4r \cos \theta \]

The divergence theorem \[\int \nabla \cdot \mathbf{v} \, dV = \oint_S \mathbf{v} \cdot d\mathbf{a} \]

\[\oint_S \mathbf{v} \cdot d\mathbf{a} = xy\text{-plane} + yz\text{-plane} + zx\text{-plane} + \text{curved surface} \]

xy-plane: \[d\mathbf{a} = -r \, d\theta \, d\phi, \quad \mathbf{v} \cdot d\mathbf{a} = (r^2 \cos \theta \sin \phi) \, r \, d\theta \, d\phi = 0, \]

yz-plane: \[d\mathbf{a} = r \, d\theta \, d\phi, \quad \mathbf{v} \cdot d\mathbf{a} = -(r^2 \cos \theta \sin \phi) \, r \, d\theta \, d\phi = -r^3 \cos \theta \, d\theta \, d\phi = -\frac{1}{4} R^4 \]

zx-plane: \[d\mathbf{a} = r \, d\theta \, d\phi, \quad \mathbf{v} \cdot d\mathbf{a} = (r^2 \cos \phi) \, r \, d\phi = r^3 \cos \phi \, d\phi = \frac{1}{4} R^4 \]

curved surface: \[d\mathbf{a} = R^2 \sin \theta \, d\theta \, d\phi \, \mathbf{\hat{r}}, \quad r = R, \quad \mathbf{v} \cdot d\mathbf{a} = (R^2 \cos \theta) R^2 \sin \theta \, d\theta \, d\phi = \frac{R^4}{2} \sin 2\theta \, d\phi = \frac{\pi R^4}{4} \]

\[\oint_S \mathbf{v} \cdot d\mathbf{a} = 0 - \frac{1}{4} R^4 + \frac{1}{4} R^4 + \frac{\pi R^4}{4} = \frac{\pi R^4}{4} = \int_r \nabla \cdot \mathbf{v} \, dV \]

(b)

2.
(a)

\[\begin{cases}
(i) \quad V_i(a, \theta) = 0 \\
(ii) \quad V_j(b, \theta) = V_0 (2 \cos \theta - 5 \cos \theta \sin^2 \theta) = V_0 (5 \cos^3 \theta - 3 \cos \theta) = 2V_0 P_i \\
(iii) \quad V_3(r, \theta = \pi/2) = 0
\end{cases} \]

General solution \[V(r, \theta) = \sum_{i=0}^{\infty} (A_i r^i + B_i r^{-(i+1)}) P_i (\cos \theta) \]
B.C. (i) \(V(a, \theta) = \sum_{i=0}^{n} (A_i a^i + B_i a^{-(i+1)}) P_i(\cos \theta) = 0 \Rightarrow B_i = -A_i a^{2i+1} \)

B.C. (ii) \(V(b, \theta) = \sum_{i=0}^{n} (A_i b^i + B_i b^{-(i+1)}) P_i(\cos \theta) = 2V_0 P_3(\cos \theta) \)

Comparing the coefficient \(\Rightarrow A_i b^3 + B_i b^{-4} = 2V_0, \quad A_i = B_i = 0 \) for \(\ell = 0,1,2,4,5,... \)

B.C. (iii) \(V(r, \theta = \frac{\pi}{2}) = (A_3 r^3 + B_3 r^{-4}) P_3(0) = 0 \Rightarrow A_3 = B_3 = 0 \) except \(\ell = 3, \)

\[A_3 = \frac{2V_0 b^4}{b^3 - a^3} \quad \text{and} \quad B_3 = -\frac{2V_0 b^4 a^7}{b^3 - a^3} \]

\[V(r, \theta) = \left(\frac{2V_0}{b^3 - a^3} b^4 r^3 - \frac{2V_0}{b^3 - a^3} b^4 a^7 r^{-4} \right) \left(\frac{5\cos^3 \theta - 3\cos \theta}{2} \right) \]

(b) Boundary condition

\[
\begin{align*}
(i) \quad & V_1(a, \theta) = 0 \\
(ii) \quad & V_2(b, \theta) = V_0 \sin \theta \\
(iii) \quad & V_2(r, \theta = \frac{\pi}{2}) = 0
\end{align*}
\]

General solution \(V(r, \theta) = \sum_{i=0}^{n} (A_i r^i + B_i r^{-i-1}) P_i(\cos \theta) \)

B.C. (i) \(\sum_{i=0}^{n} (A_i a^i + B_i a^{-(i+1)}) P_i(\cos \theta) = 0 \Rightarrow B_i = -A_i a^{2i+1} \)

B.C. (iii) \(\sum_{i=0}^{n} (A_i r^i + B_i r^{-i-1}) P_i(0) = 0 \quad \Rightarrow \ell = 1,3,5,... \) only odd terms survive

B.C. (ii) \(\sum_{i=0}^{n} A_i (b^i - a^{2i+1}) P_i(\cos \theta) = V_0 \sin \theta \)

\[\int_{-1}^{1} P_i(x) P_i(x) \, dx = \int_{0}^{\pi} P_i(\cos \theta) P_i(\cos \theta) \sin \theta \, d\theta = \begin{cases} 0 & \text{if } \ell' \neq \ell \\ \frac{2}{2\ell + 1}, & \text{if } \ell' = \ell \end{cases} \]

\[\sum_{i=0}^{n} A_i \left(b^i - a^{2i+1} \right) \int_{0}^{\pi} P_i(\cos \theta) P_i(\cos \theta) \sin \theta \, d\theta = \int_{0}^{\pi} V_0 \sin \theta P_i(\cos \theta) \sin \theta \, d\theta \]

\[A_\ell = (\frac{b^i}{b^{2i+1} - a^{2i+1}}) \frac{2\ell + 1}{2} \int_{0}^{\pi} V_0 \sin \theta P_i(\cos \theta) \sin \theta \, d\theta \]

But \(A_\ell = 0 \) for \(\ell = 1,3,5,... \) It does not make sense. Why?

Add an artificial boundary condition \(V_2(b, \theta) = \begin{cases} V_0 \sin \theta & \text{for } 0 \leq \theta \leq \frac{\pi}{2} \\ -V_0 \sin \theta & \text{for } \frac{\pi}{2} \leq \theta \leq \pi \end{cases} \)

or \(V_2(b, \theta) = \begin{cases} V_0 \sin \theta & \text{for } 0 \leq \theta \leq \frac{\pi}{2} \\ 0 & \text{for } \frac{\pi}{2} \leq \theta \leq \pi \end{cases} \)
3. (a)

\[\mathbf{E} = -\nabla V = -A \frac{\partial}{\partial r} \left(\frac{e^{-\lambda r}}{r} \right) \hat{r} = -A \left\{ -\lambda r e^{-\lambda r} - e^{-\lambda r} \right\} \hat{r} = A \left(\frac{\lambda r + 1) e^{-\lambda r}}{r^2} \right) \hat{r} \]

Energy density

\[\frac{\varepsilon_0}{2} E^2 = \frac{\varepsilon_0}{2} A^2 \left(\frac{\lambda r + 1) e^{-\lambda r}}{r^2} \right) \]

(b)

\[\rho = \varepsilon_0 \nabla \cdot \mathbf{E} = \varepsilon_0 A (\nabla \cdot \frac{(\lambda r + 1) e^{-\lambda r}}{r^2}) = \varepsilon_0 A (\lambda r + 1) e^{-\lambda r} \left(\nabla \cdot \frac{\hat{r}}{r^2} \right) + \varepsilon_0 A \frac{\hat{r}}{r^2} \cdot \nabla ((\lambda r + 1) e^{-\lambda r}) \]

\[(\nabla \cdot \frac{\hat{r}}{r^2}) = 4\pi \delta^3 (\mathbf{r}) \text{ and } (\lambda r + 1) e^{-\lambda r} \delta^3 (\mathbf{r}) = \delta^3 (\mathbf{r}) \]

\[\frac{\hat{r}}{r^2} \cdot \nabla ((\lambda r + 1) e^{-\lambda r}) = \left[\frac{\hat{r}}{r^2} \cdot \frac{\partial}{\partial r} \right] ((\lambda r + 1) e^{-\lambda r}) = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \right] ((\lambda r + 1) e^{-\lambda r}) = -\frac{\lambda^2}{r} e^{-\lambda r} \]

\[\rho = \varepsilon_0 A \left[4\pi \delta^3 (\mathbf{r}) - \frac{\lambda^2}{r} e^{-\lambda r} \right] \]

(c)

\[Q = \int \rho d\tau = \int \varepsilon_0 A [4\pi \delta^3 (r) - \frac{\lambda^2}{r} e^{-\lambda r}] d\tau = 4\pi \varepsilon_0 A [1 + \int_{r=0}^{\infty} \frac{\lambda^2}{r} e^{-\lambda r} r^2 dr] \]

\[\int_{r=0}^{\infty} \frac{\lambda^2}{r} e^{-\lambda r} r^2 dr = \int_{r=0}^{\infty} e^{-\lambda r} \lambda^2 r^2 dr = -\int_{r=0}^{\infty} \lambda r e^{-\lambda r} = -\int_{x=0}^{\infty} x e^{-x} = -1 \Rightarrow Q = \int \rho d\tau = 0 \]

Use Gauss's law, the charge enclosed in a sphere of radius \(R \)

\[Q_R = \oint_S \mathbf{E} \cdot d\mathbf{a} = 4\pi \varepsilon_0 A (\lambda R + 1) e^{-\lambda R} \quad \Rightarrow \quad \text{The total charge } Q_{R \to \infty} = 4\pi \varepsilon_0 A (\lambda R + 1) e^{-\lambda R} \bigg|_{R=\infty} = 0 \]

4. (a)

Assume the image line charge of \(-\lambda\) is placed at a distance \(d \) below the plane.

Using the Gauss's law, the electric field outside a line charge \(\lambda \) is \(\mathbf{E} = -\frac{\lambda}{2\pi \varepsilon_0 r} \hat{r} \).

So \(V = \int_{r_0}^{r} \mathbf{E} \cdot d\mathbf{l} = \frac{\lambda}{2\pi \varepsilon_0} \ln \frac{r_0}{r} = V(r) - V_{ref}(r_0) \)

\[V = V_+ + V_- = \frac{\lambda}{2\pi \varepsilon_0} \left[\ln \frac{r_0}{\sqrt{(x-d)^2 + y^2}} - \ln \frac{r_0}{\sqrt{(x+d)^2 + y^2}} \right] = \frac{\lambda}{4\pi \varepsilon_0} \left(\ln \frac{(x+d)^2 + y^2}{(x-d)^2 + y^2} \right) \]

(b)
\[\sigma = \varepsilon_0 E \cdot \hat{n} = \varepsilon_0 E_x = -\frac{\partial}{\partial x} \frac{\lambda}{4\pi} \left\{ \ln \left(\frac{(x+d)^2 + y^2}{(x-d)^2 + y^2} \right) \right\}_{x=0} = -\frac{\lambda}{4\pi} \left\{ \frac{2(x+d)}{(x+d)^2 + y^2} - \frac{2(x-d)}{(x-d)^2 + y^2} \right\}_{x=0} \]

\[= -\frac{\lambda}{4\pi} \frac{4d}{d^2 + y^2} = -\frac{\lambda}{\pi} \frac{d}{d^2 + y^2} \]

Simple check: \[\lambda' = \int_{-\infty}^{\infty} \sigma dy = \int_{-\infty}^{\infty} -\frac{\lambda}{\pi} \frac{d}{d^2 + y^2} dy \]

Let \(y = d \tan \theta, \ dy = d \sec^2 \theta d\theta \)

\[\lambda' = -\frac{\lambda}{\pi} \int_{-\pi/2}^{\pi/2} d^2 \sec^2 \theta \frac{d}{d^2 \sec^2 \theta} d\theta = -\lambda \]

(c) \[
\begin{align*}
dF &= Edq = E \lambda d\ell \\
\frac{dF}{d\ell} &= E\lambda = \frac{\lambda}{2\pi\varepsilon_0 (2d)} = \frac{\lambda^2}{4\pi\varepsilon_0 d}
\end{align*}
\]

5.

(a) Consider this problem as two charge spheres, one with charge density \(\rho \) the other with opposite charge density \(-\rho \).

\[
V_{\text{big}} = \frac{1}{4\pi\varepsilon_0 r} \left(\rho \frac{4\pi}{3} R^3 \right) \quad \text{and} \quad V_{\text{small}} = \frac{1}{4\pi\varepsilon_0} \left[-\rho \frac{4\pi}{3} \left(\frac{R}{2} \right)^3 \right]
\]

\[
\frac{1}{|r - \frac{1}{2} R|} = \frac{1}{r} \left(1 + \frac{1}{2r} \right) \cos \theta + \ldots
\]

Using the principle of superposition, we find,

\[
V = \frac{1}{4\pi\varepsilon_0 r} \left(\rho \frac{4\pi}{3} R^3 \right) - \frac{1}{4\pi\varepsilon_0 r} \left(\rho \frac{4\pi}{3} \left(\frac{R}{2} \right)^3 \right) \left(1 + \frac{1}{2r} \right) \cos \theta + \ldots
\]

\[
= \frac{1}{4\pi\varepsilon_0 r} \frac{7}{8} \left(\rho \frac{4\pi}{3} R^3 \right) - \frac{1}{4\pi\varepsilon_0 r} \frac{1}{2r} \left(\rho \frac{4\pi}{3} \left(\frac{R}{2} \right)^3 \right) \cos \theta + \ldots, \quad \text{let} \ Q = \rho \frac{4\pi}{3} R^3
\]

\[
= \frac{1}{4\pi\varepsilon_0 r} \frac{7Q}{8} - \frac{1}{4\pi\varepsilon_0 r^2} \frac{Q R}{8} \cos \theta + \ldots
\]

(b) \[
Q = \rho \frac{4\pi}{3} R^3
\]

\[
V = \frac{1}{4\pi\varepsilon_0 r} \frac{7Q}{8} - \frac{1}{4\pi\varepsilon_0 r^2} \frac{Q R}{8} \cos \theta + \ldots
\]

The first term is the monopole term and the second term is the dipole term.

So the dipole moment \(p = -\frac{QR}{16} \hat{z} \)

(c)
\[V = \frac{1}{4\pi\varepsilon_0 r} \left(\frac{7Q}{8} - \frac{1}{4\pi\varepsilon_0 r^2} (\frac{Q R}{8} \cos \theta + \ldots) \right) \]

\[\mathbf{E} = -\nabla V = -\frac{\partial V}{\partial r} \hat{r} - \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta} - \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\phi} \]

\[= \left(\frac{1}{4\pi\varepsilon_0 r^2} \left(\frac{7Q}{8} - \frac{2p}{4\pi\varepsilon_0 r^3} \cos \theta \right) \right) \hat{r} - \frac{p}{4\pi\varepsilon_0 r^3} \sin \theta \hat{\theta} \]